Exemplo n.º 1
0
    def forward(self, input):
        # names = list(input.keys())
        input = list(input.values())

        output1 = self.output1(input[0])
        output2 = self.output2(input[1])
        output3 = self.output3(input[2])

        # up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode="nearest") # upsample by 2
        up3 = self.upsample(output3)
        if up3.value[2] != output2.value[2] or up3.value[3] != output2.value[3]:
            pad = (0, output2.value[3] - up3.value[3], 0,
                   output2.value[2] - up3.value[2])
            up3 = F.pad(up3, pad)
        output2 = self.eltadd(output2, up3)
        output2 = self.merge2(output2)

        # up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode="nearest") # upsample by 2
        up2 = self.upsample(output3)
        if up2.value[2] != output1.value[2] or up2.value[3] != output1.value[3]:
            pad = (0, output1.value[3] - up2.value[3], 0,
                   output1.value[2] - up2.value[2])
            up2 = F.pad(up2, pad)
        output1 = self.eltadd(output1, up2)
        output1 = self.merge1(output1)

        out = [output1, output2, output3]
        return out
Exemplo n.º 2
0
    def forward(self, x):
        loc = list()
        conf = list()

        conv1_x = self.inception1(self.conv1(x))
        conv2_x = self.inception2(self.maxpool1(conv1_x))
        conv3_x = self.inception3(self.conv3(conv2_x))
        conv4_x = self.inception4(self.maxpool2(conv3_x))
        conv5_x = self.conv5_2(self.conv5_1(conv4_x))
        conv6_x = self.conv6_2(self.conv6_1(conv5_x))

        # fpn
        conv6_x = self.latlayer6(conv6_x)
        conv5_x = self.latlayer5(conv5_x)
        conv4_x = self.latlayer4(conv4_x)
        conv3_x = self.latlayer3(conv3_x)
        conv2_x = self.latlayer2(conv2_x)
        conv1_x = self.latlayer1(conv1_x)

        conv4_x_up = self.upsample(conv4_x)
        if conv4_x_up.value[2] != conv3_x.value[2] or conv4_x_up.value[3] != conv3_x.value[3]:
            pad = (0, conv3_x.value[3] - conv4_x_up.value[3], 0, conv3_x.value[2] - conv4_x_up.value[2])
            conv4_x_up = F.pad(conv4_x_up, pad)
        conv3_x = self.smooth3(self.eltmul(conv4_x_up , conv3_x))

        conv3_x_up = self.upsample(conv2_x)
        if conv3_x_up.value[2] != conv2_x.value[2] or conv3_x_up.value[3] != conv2_x.value[3]:
            pad = (0, conv2_x.value[3] - conv3_x_up.value[3], 0, conv2_x.value[2] - conv3_x_up.value[2])
            conv3_x_up = F.pad(conv3_x_up, pad)
        conv2_x = self.smooth2(self.eltmul(conv3_x_up , conv2_x))

        conv2_x_up = self.upsample(conv2_x)
        if conv2_x_up.value[2] != conv1_x.value[2] or conv2_x_up.value[3] != conv1_x.value[3]:
            pad = (0, conv1_x.value[3] - conv2_x_up.value[3], 0, conv1_x.value[2] - conv2_x_up.value[2])
            conv2_x_up = F.pad(conv2_x_up, pad)
        conv1_x = self.smooth1(self.eltmul(conv2_x_up , conv1_x))

        sources = [conv1_x, conv2_x, conv3_x, conv4_x, conv5_x, conv6_x]
        # cpm
        sources[0] = self.cpm1(sources[0])
        sources[1] = self.cpm2(sources[1])
        sources[2] = self.cpm3(sources[2])
        sources[3] = self.cpm4(sources[3])
        sources[4] = self.cpm5(sources[4])
        sources[5] = self.cpm6(sources[5])

        # head
        featuremap_size = []
        for (x, l, c) in zip(sources, self.loc, self.conf):
            featuremap_size.append([x.size(2), x.size(3)])
            loc.append(l(x).permute(0, 2, 3, 1))
            conf.append(c(x).permute(0, 2, 3, 1))

        face_loc = flops_counter.cat([o.view(o.size(0), -1) for o in loc], 1)
        face_conf = flops_counter.cat([o.view(o.size(0), -1) for o in conf], 1)

        return face_loc.view(face_loc.size(0), -1, 4), self.softmax(face_conf.view(face_conf.size(0), -1, 2))
Exemplo n.º 3
0
    def feature_extractor(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        c2 = self.layer1(x)
        c3 = self.layer2(c2)
        c4 = self.layer3(c3)
        c5 = self.layer4(c4)
        c6 = self.layer5(c5)
        c7 = self.layer6(c6)

        c2_r = self.c2_conv(c2)
        c3_r = self.c3_conv(c3)
        c4_r = self.c4_conv(c4)
        c5_r = self.c5_conv(c5)
        c6_r = self.c6_conv(c6)
        c7_r = self.c7_conv(c7)

        c5_lateral = self.c5_lateral(c5)
        p5 = self.p5_conv(c5_lateral)
        p6 = self.p6_conv(c5_lateral)
        p7 = self.p7_conv(p6)

        c4_lateral = self.c4_lateral(c4)
        c5_lateral_up = self.upsample(c5_lateral)
        if c5_lateral_up.value[2] != c4_lateral.value[
                2] or c5_lateral_up.value[3] != c4_lateral.value[3]:
            pad = (0, c4_lateral.value[3] - c5_lateral_up.value[3], 0,
                   c4_lateral.value[2] - c5_lateral_up.value[2])
            c5_lateral_up = F.pad(c5_lateral_up, pad)
        sum_4 = self.eltadd(c4_lateral, c5_lateral_up)
        p4 = self.p4_conv(sum_4)

        c3_lateral = self.c3_lateral(c3)
        sum_4_up = self.upsample(sum_4)
        if sum_4_up.value[2] != c3_lateral.value[2] or sum_4_up.value[
                3] != c3_lateral.value[3]:
            pad = (0, c3_lateral.value[3] - sum_4_up.value[3], 0,
                   c3_lateral.value[2] - sum_4_up.value[2])
            sum_4_up = F.pad(sum_4_up, pad)
        sum_3 = self.eltadd(sum_4_up, c3_lateral)
        p3 = self.p3_conv(sum_3)

        c2_lateral = self.c2_lateral(c2)
        sum_3_up = self.upsample(sum_3)
        if sum_3_up.value[2] != c2_lateral.value[2] or sum_3_up.value[
                3] != c2_lateral.value[3]:
            pad = (0, c2_lateral.value[3] - sum_3_up.value[3], 0,
                   c2_lateral.value[2] - sum_3_up.value[2])
            sum_3_up = F.pad(sum_3_up, pad)
        sum_2 = self.eltadd(sum_3_up, c2_lateral)
        p2 = self.p2_conv(sum_2)

        return (c2_r, c3_r, c4_r, c5_r, c6_r, c7_r), (p2, p3, p4, p5, p6, p7)
Exemplo n.º 4
0
    def forward(self, x):
        outs = []

        conv3_3 = self.conv3(self.conv2(self.conv1(x)))
        conv4_3 = self.conv4(conv3_3)
        conv5_3 = self.conv5(conv4_3)

        # M3
        pool6 = self.pool6(conv5_3)
        m3_out = self.m3(pool6)
        outs.append(m3_out)

        # M2
        m2_out = self.m2(conv5_3)
        outs.append(m2_out)

        # share by M1 and M0
        conv4_128 = self.conv4_128(conv4_3)

        # M1
        conv5_128 = self.conv5_128(conv5_3)
        conv5_128_up = self.conv5_128_up(conv5_128)
        #  padding so that conv5_128_up can have the same size as conv4_128
        if conv4_128.value[2] != conv5_128_up.value[2] or conv4_128.value[3] != conv5_128_up.value[3]:
            pad = (0, conv4_128.value[3] - conv5_128_up.value[3], 0, conv4_128.value[2] - conv5_128_up.value[2])
            conv5_128_up = F.pad(conv5_128_up, pad)
        conv4_fuse = self.conv4_fuse(conv4_128, conv5_128_up)
        conv4_fuse_final = self.conv4_fuse_final(conv4_fuse)
        m1_out = self.m1(conv4_fuse_final)
        outs.append(m1_out)

        # M0
        conv3_128 = self.conv3_128(conv3_3)
        conv4_128_up = self.conv4_128_up(conv4_128)
        #  padding so that conv4_128_up can have the same size as conv3_128
        if conv3_128.value[2] != conv4_128_up.value[2] or conv3_128.value[3] != conv4_128_up.value[3]:
            pad = (0, conv3_128.value[3] - conv4_128_up.value[3], 0, conv3_128.value[2] - conv4_128_up.value[2])
            conv4_128_up = F.pad(conv4_128_up, pad)
        conv3_fuse = self.conv3_fuse(conv3_128, conv4_128_up)
        conv3_fuse_final = self.conv3_fuse_final(conv3_fuse)
        m0_out = self.m0(conv3_fuse_final)
        outs.append(m0_out)

        # detection head
        loc = []
        conf = []
        for i, o in enumerate(outs[::-1]): # reverse outs so that the order of feature maps match with the order of heads
            loc.append(self.bbox_head[i](o))

            cls_score = self.cls_head[i](o)
            cls_score = cls_score.view(cls_score.size(0), -1, 4)
            cls_score = self.softmax(cls_score)
            conf.append(cls_score)

        return loc, conf
Exemplo n.º 5
0
    def forward(self, x):
        conv = self.conv(x)
        pool = self.pool(conv)

        res2a = self.res2a(pool)
        res2b = self.res2b(res2a)
        res2c = self.res2c(res2b)

        res3a = self.res3a(res2c)
        res3b1 = self.res3b1(res3a)
        res3b2 = self.res3b2(res3b1)
        res3b3 = self.res3b3(res3b2)

        res4a = self.res4a(res3b3)
        res4bX = res4a
        for i in range(0, 22):
            res4bX = self.res4bX[i](res4bX)

        # Detection Head
        score_res4 = self.score_res4(res4bX)
        score4 = self.score4(score_res4)

        score_res3 = self.score_res3(res3b3)

        if score4.value[2] != score_res3.value[2] or score4.value[3] != score_res3.value[3]:
            pads = (0, score_res3.value[3] - score4.value[3], 0, score_res3.value[2] - score4.value[2])
            score4 = F.pad(score4, pads)


        score_final = self.eltadd(score4, score_res3)
        return score_final
Exemplo n.º 6
0
def upsample_add(seq, source, target, up_handle, add_handle):
    up = up_handle(source)
    if up.value[2] != target.value[2] or up.value[3] != target.value[3]:
        pad = (0, target.value[3] - up.value[3], 0,
               target.value[2] - up.value[2])
        up = F.pad(up, pad)
    dst = add_handle(seq(up), target)
    return dst
Exemplo n.º 7
0
    def forward(self, x):
        out = x

        # get conv4_3
        for k in range(23):
            out = self.vgg16[k](out)
        conv4_3 = out

        # get conv5_3
        for k in range(23, 30):
            out = self.vgg16[k](out)
        conv5_3 = out

        # get pool6 (it's actually pool5)
        pool6 = self.vgg16[30](out)

        # SSH - M3
        M3_output = self.M3(pool6)
        # SSH - M3 - bbox_pred
        M3_bbox_pred = self.M3_bbox_pred(M3_output)
        # SSH - M3 - cls_score
        M3_cls_score = self.M3_cls_score(M3_output)
        M3_cls_score = M3_cls_score.view(M3_cls_score.value[0], 2, -1, M3_cls_score.value[-1])
        M3_cls_prob = self.M3_cls_score_softmax(M3_cls_score)
        M3_cls_prob = M3_cls_prob.view(M3_cls_prob.value[0], 4, -1, M3_cls_prob.value[-1])

        # SSH - M2
        M2_output = self.M2(conv5_3)
        # SSH - M2 - bbox_pred
        M2_bbox_pred = self.M2_bbox_pred(M2_output)
        # SSH - M2 - cls_score
        M2_cls_score = self.M2_cls_score(M2_output)
        M2_cls_score = M2_cls_score.view(M2_cls_score.value[0], 2, -1, M2_cls_score.value[-1])
        M2_cls_prob = self.M2_cls_score_softmax(M2_cls_score)
        M2_cls_prob = M2_cls_prob.view(M2_cls_prob.value[0], 4, -1, M2_cls_prob.value[-1])

        # SSH - M1
        conv4_128 = self.conv4_128(conv4_3)
        conv4_128 = self.conv4_128_relu(conv4_128)
        conv5_128 = self.conv5_128(conv5_3)
        conv5_128 = self.conv5_128_relu(conv5_128)
        conv5_128_up = self.conv5_128_up(conv5_128)
        if conv5_128_up.value[2] != conv4_128.value[2] or conv5_128_up.value[3] != conv4_128.value[3]:
            pads = (0, conv4_128.value[3] - conv5_128_up.value[3], 0, conv4_128.value[2] - conv5_128_up.value[2])
            conv5_128_up = F.pad(conv5_128_up, pads)
        conv4_fuse = self.eltadd(conv4_128, conv5_128_up)
        conv4_fuse_final = self.conv4_fuse_final(conv4_fuse)
        conv4_fuse_final = self.conv4_fuse_final_relu(conv4_fuse_final)
        M1_output = self.M1(conv4_fuse_final)
        # SSH - M2 - bbox_pred
        M1_bbox_pred = self.M1_bbox_pred(M1_output)
        # SSH - M2 - cls_score
        M1_cls_score = self.M1_cls_score(M1_output)
        M1_cls_score = M1_cls_score.view(M1_cls_score.value[0], 2, -1, M1_cls_score.value[-1])
        M1_cls_prob = self.M1_cls_score_softmax(M1_cls_score)
        M1_cls_prob = M1_cls_prob.view(M1_cls_prob.value[0], 4, -1, M1_cls_prob.value[-1])

        return (M1_bbox_pred, M2_bbox_pred, M3_bbox_pred), (M1_cls_prob, M2_cls_prob, M3_cls_prob)
Exemplo n.º 8
0
    def forward(self, up_from, up_to):
        conv1 = self.conv1(up_from)
        conv1 = self.conv1_relu(conv1)
        upsampling = self.upsampling(conv1)

        conv2 = self.conv2(up_to)
        conv2 = self.conv2_relu(up_to)

        if upsampling.value[2] != conv2.value[2] or upsampling.value[
                3] != conv2.value[3]:
            # upsampling = upsampling[:, :, 0:conv2.size(2), 0:conv2.size(3)]
            pads = (0, conv2.value[3] - upsampling.value[3], 0,
                    conv2.value[2] - upsampling.value[2])
            upsampling = F.pad(upsampling, pads)

        fuse = self.eltmul(upsampling, conv2)
        return fuse
Exemplo n.º 9
0
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        conv4_3 = self.conv4(x)

        # branch 1
        conv5_3 = self.conv5(self.pool4(conv4_3))
        conv5_256 = self.conv5_256(conv5_3)
        conv5_256_up = self.conv5_256_up(conv5_256)
        # branch 2
        conv4_256 = self.conv4_256(conv4_3)
        # fuse(conv5_256_up, conv4_256)
        if conv5_256_up.value[2] != conv4_256.value[3] or conv5_256_up.value[
                3] != conv4_256.value[3]:
            pad = (0, conv4_256.value[3] - conv5_256_up.value[3], 0,
                   conv4_256.value[2] - conv5_256_up.value[2])
            conv5_256_up = F.pad(conv5_256_up, pad)
        conv4_fuse = flops_counter.cat([conv5_256_up, conv4_256], 1)

        conv4_fuse_final_dim_red = self.conv4_fuse_final_dim_red(
            self.conv4_fuse_final(conv4_fuse))

        head1_f = self.head1(conv4_fuse_final_dim_red)
        head2_f = self.head2(conv4_fuse_final_dim_red)
        head4_f = self.head4(conv4_fuse_final_dim_red)
        outs = [head1_f, head2_f, head4_f]

        loc = []
        conf = []
        for i, o in enumerate(outs):
            loc += [self.bbox_head[i](o)]
            conf += [self.cls_head[i](o)]

        loc_cat = flops_counter.cat(loc, 1)
        conf_cat = self.softmax(flops_counter.cat(conf, 2))

        return loc_cat, conf_cat
Exemplo n.º 10
0
    def forward(self, x):
        loc = list()
        conf = list()

        ######
        # Backbone
        ######
        conv3_3_x = self.layer1(x)
        conv4_3_x = self.layer2(conv3_3_x)
        conv5_3_x = self.layer3(conv4_3_x)
        fc7_x = self.layer4(conv5_3_x)
        conv6_2_x = self.layer5(fc7_x)
        conv7_2_x = self.layer6(conv6_2_x)

        ######
        # dsfd specific layers
        ######
        # fpn
        lfpn3_fc7_x_up = self.upsample(self.latlayer3(fc7_x))
        lfpn3_conv5_3_x = self.smooth3(conv5_3_x)
        if lfpn3_fc7_x_up.value[2] != lfpn3_conv5_3_x.value[
                2] or lfpn3_fc7_x_up.value[3] != lfpn3_conv5_3_x.value[3]:
            pad = (0, lfpn3_conv5_3_x.value[3] - lfpn3_fc7_x_up.value[3], 0,
                   lfpn3_conv5_3_x.value[2] - lfpn3_fc7_x_up.value[2])
            lfpn3_fc7_x_up = F.pad(lfpn3_fc7_x_up, pad)
        lfpn3 = self.eltmul(lfpn3_fc7_x_up, lfpn3_conv5_3_x)

        lfpn2_lfpn3_up = self.upsample(self.latlayer2(lfpn3))
        lfpn2_conv4_3_x = self.smooth2(conv4_3_x)
        if lfpn2_lfpn3_up.value[2] != lfpn2_conv4_3_x.value[
                2] or lfpn2_lfpn3_up.value[3] != lfpn2_conv4_3_x.value[3]:
            pad = (0, lfpn2_conv4_3_x.value[3] - lfpn2_lfpn3_up.value[3], 0,
                   lfpn2_conv4_3_x.value[2] - lfpn2_lfpn3_up.value[2])
            lfpn2_lfpn3_up = F.pad(lfpn2_lfpn3_up, pad)
        lfpn2 = self.eltmul(lfpn2_lfpn3_up, lfpn2_conv4_3_x)

        lfpn1_lfpn2_up = self.upsample(self.latlayer1(lfpn2))
        lfpn1_conv3_3_x = self.smooth1(conv3_3_x)
        if lfpn1_lfpn2_up.value[2] != lfpn1_conv3_3_x.value[
                2] or lfpn1_lfpn2_up.value[3] != lfpn1_conv3_3_x.value[3]:
            pad = (0, lfpn1_conv3_3_x.value[3] - lfpn1_lfpn2_up.value[3], 0,
                   lfpn1_conv3_3_x.value[2] - lfpn1_lfpn2_up.value[2])
            lfpn1_lfpn2_up = F.pad(lfpn1_lfpn2_up, pad)
        lfpn1 = self.eltmul(lfpn1_lfpn2_up, lfpn1_conv3_3_x)

        conv5_3_x = lfpn3
        conv4_3_x = lfpn2
        conv3_3_x = lfpn1

        # fem
        sources = [
            conv3_3_x, conv4_3_x, conv5_3_x, fc7_x, conv6_2_x, conv7_2_x
        ]
        sources[0] = self.cpm3_3(sources[0])
        sources[1] = self.cpm4_3(sources[1])
        sources[2] = self.cpm5_3(sources[2])
        sources[3] = self.cpm7(sources[3])
        sources[4] = self.cpm6_2(sources[4])
        sources[5] = self.cpm7_2(sources[5])

        # apply multibox head to source layers
        loc = list()
        conf = list()
        for x, l, c in zip(sources, self.loc, self.conf):
            # l(x)
            loc.append(l(x).permute(0, 2, 3, 1))
            # mio: max_in_out
            conf.append(c(x).permute(0, 2, 3, 1))
        # face_conf = flops_counter.cat([flops_counter.view([o[1], o[2], 2], (1, -1)) for o in conf], 1)
        # output = self.softmax(flops_counter.view(face_conf, (1, -1, 2)))
        face_confs = list()
        for o in conf:
            dst = [i for i in o.value]
            dst[-1] = 2
            face_confs.append(flops_counter.TensorSize(dst))
        face_conf = flops_counter.cat(
            [o.view(o.value[0], -1) for o in face_confs], 1)
        output = self.softmax(face_conf.view(face_conf.value[0], -1, 2))
        return output