def setUp(self):
     """
     Method for instantiating test environment.
     """
     self.n_sites = 35
     self.c = DistanceMatrix(level="versioned-site")
     self.df = self.c.get_dataframe()
class DistanceMatrixTestCase(TestCase):
    """
    Tests for the DistanceMatrix() class.

    """

    def setUp(self):
        """
        Method for instantiating test environment.
        """
        self.n_sites = 35
        self.c = DistanceMatrix(level="versioned-site")
        self.df = self.c.get_dataframe()

    def test_some_results(self):
        """
        DistanceMatrix() returns a dataframe that contains hand-picked results.
        """
        set_df = self.df.set_index("site_id_from")
        self.assertAlmostEqual(
            round(set_df.loc["8wPojr"]["distance"].values[0]), 789, 2
        )
        self.assertAlmostEqual(
            round(set_df.loc["8wPojr"]["distance"].values[2]), 769, 2
        )
        self.assertAlmostEqual(
            round(set_df.loc["8wPojr"]["distance"].values[4]), 758, 2
        )

    def test_result_has_correct_length(self):
        """
        DistanceMatrix() has the correct length.
        """
        self.assertEqual(len(self.df), self.n_sites ** 2)
Exemplo n.º 3
0
    def __init__(
        self,
        start: str,
        stop: str,
        reference_location: BaseLocation,
        statistic: str = "avg",
        unit: str = "km",
        hours: Union[str, Tuple[int, int]] = "all",
        table: Union[str, List[str]] = "all",
        subscriber_identifier: str = "msisdn",
        ignore_nulls: bool = True,
        return_subscribers_not_seen: bool = False,
        subscriber_subset: Optional[Query] = None,
    ):

        self.return_subscribers_not_seen = return_subscribers_not_seen
        self.start = start
        self.stop = stop
        self.spatial_unit = reference_location.spatial_unit
        subscriber_locations = SubscriberLocations(
            self.start,
            self.stop,
            spatial_unit=self.spatial_unit,
            hours=hours,
            table=table,
            subscriber_identifier=subscriber_identifier,
            ignore_nulls=ignore_nulls,
            subscriber_subset=subscriber_subset,
        )

        self.statistic = statistic.lower()
        if self.statistic not in valid_stats:
            raise ValueError(
                "{} is not a valid statistic. Use one of {}".format(
                    self.statistic, valid_stats))

        if not isinstance(reference_location, BaseLocation):
            raise ValueError(
                "Argument 'reference_location' should be an instance of BaseLocation class. "
                f"Got: {type(reference_location)}")
        else:
            self.reference_location = reference_location
            self.joined = reference_location.join(
                other=subscriber_locations,
                on_left=["subscriber"],
                left_append="_from",
                right_append="_to",
            ).join(
                DistanceMatrix(spatial_unit=self.spatial_unit),
                on_left=[
                    f"{col}_{direction}" for direction in ("from", "to")
                    for col in self.spatial_unit.location_id_columns
                ],
                right_append="_dist",
                how="left outer",
            )

        self.unit = unit

        super().__init__()
Exemplo n.º 4
0
    def __init__(
        self,
        *,
        subscriber_locations: SubscriberLocations,
        reference_location: Union[BaseLocation, Tuple[float, float]] = (0, 0),
        statistic: str = "avg",
        time_bucket: str = "day",
    ):
        subscriber_locations.spatial_unit.verify_criterion("has_geography")
        subscriber_locations.spatial_unit.verify_criterion("has_lon_lat_columns")
        self.spatial_unit = subscriber_locations.spatial_unit
        if time_bucket.lower() in valid_time_buckets:
            self.aggregate_by = time_bucket.lower()
        else:
            raise ValueError(
                f"'{time_bucket}' is not a valid value for time_bucket. Use one of {valid_time_buckets}"
            )

        if statistic.lower() not in valid_stats:
            raise ValueError(
                f"'{statistic}' is not a valid statistic. Use one of {valid_stats}"
            )
        self.statistic = statistic.lower()
        self.start = standardise_date(subscriber_locations.start)
        self.stop = standardise_date(subscriber_locations.stop)
        if isinstance(reference_location, tuple):
            self.reference_location = reference_location
            self.joined = subscriber_locations
        elif isinstance(reference_location, BaseLocation):
            if reference_location.spatial_unit != subscriber_locations.spatial_unit:
                raise ValueError(
                    "reference_location must have the same spatial unit as subscriber_locations."
                )
            self.reference_location = reference_location
            self.joined = reference_location.join(
                other=subscriber_locations,
                on_left=["subscriber"],
                left_append="_from",
                right_append="_to",
            ).join(
                DistanceMatrix(spatial_unit=self.spatial_unit),
                on_left=[
                    f"{col}_{direction}"
                    for direction in ("from", "to")
                    for col in self.spatial_unit.location_id_columns
                ],
                right_append="_dist",
                how="left outer",
            )
        else:
            raise ValueError(
                "Argument 'reference_location' should be an instance of BaseLocation class or a tuple of two floats. "
                f"Got: {type(reference_location).__name__}"
            )

        super().__init__()
def test_some_results(get_dataframe):
    """
    DistanceMatrix() returns a dataframe that contains hand-picked results.
    """
    c = DistanceMatrix(level="versioned-site")
    df = get_dataframe(c)
    set_df = df.set_index("site_id_from")
    assert round(set_df.loc["8wPojr"]["distance"].values[0]) == 789
    assert round(set_df.loc["8wPojr"]["distance"].values[2]) == 769
    assert round(set_df.loc["8wPojr"]["distance"].values[4]) == 758
def test_some_results(get_dataframe):
    """
    DistanceMatrix() returns a dataframe that contains hand-picked results.
    """
    c = DistanceMatrix(spatial_unit=make_spatial_unit("versioned-site"))
    df = get_dataframe(c)
    set_df = df.set_index(
        ["site_id_from", "version_from", "site_id_to", "version_to"])
    assert set_df.loc[("8wPojr", 1, "GN2k0G",
                       0)]["value"] == pytest.approx(789.23239740488)
    assert set_df.loc[("8wPojr", 0, "GN2k0G",
                       0)]["value"] == pytest.approx(769.20155628077)
    assert set_df.loc[("8wPojr", 1, "DbWg4K",
                       0)]["value"] == pytest.approx(757.97771793683)
def test_not_storeable():
    with pytest.raises(UnstorableQueryError):
        DistanceMatrix(
            spatial_unit=make_spatial_unit("versioned-site")).store()
def test_result_has_correct_length(spatial_unit_type, length, get_length):
    """
    DistanceMatrix has the correct length.
    """
    c = DistanceMatrix(spatial_unit=make_spatial_unit(spatial_unit_type))
    assert get_length(c) == length
def test_result_has_correct_length(get_length):
    """
    DistanceMatrix() has the correct length.
    """
    c = DistanceMatrix(level="versioned-site")
    assert get_length(c) == 35 ** 2