Exemplo n.º 1
0
  def testFeedTermReturnsTerm(self, mockBitmap, mockTPCompute):
    model = self.Model()
    term = Term().createFromString("test")

    result = model.feedTerm(term)

    self.assertIsInstance(result, Term, "Result is not a Term")
Exemplo n.º 2
0
  def testFeedTermReturnsTerm(self):
    model = Model()
    term = Term().createFromString("test")

    result = model.feedTerm(term)

    self.assertIsInstance(result, Term, "Result is not a Term")
Exemplo n.º 3
0
  def testCreateFromString(self, ceptMock):
    term = Term()
    term = term.createFromString("fox")

    # Check that our mock object was called
    ceptMock.assert_called_with("fox")

    # Check that we have a Term type
    self.assertIsInstance(term, Term)
Exemplo n.º 4
0
    def feedTerm(self, term):
        """ Feed a Term to model, returning next predicted Term """
        tp = self.tp
        array = numpy.array(term.toArray(), dtype="uint32")
        tp.compute(array, enableLearn=True, computeInfOutput=True)

        predictedCells = tp.getPredictedState()
        predictedColumns = predictedCells.max(axis=1)

        predictedBitmap = predictedColumns.nonzero()[0].tolist()
        return Term().createFromBitmap(predictedBitmap)
Exemplo n.º 5
0
def readFile(filename, model, resetSequences=False, format=None):
  if model.canCheckpoint() and model.hasCheckpoint():
    model.load()

  exclusions = ('!', '.', ':', ',', '"', '\'', '\n')

  if format == "csv":
    fmt = "%s,%s,%s,%s,%s,%s,%s"
  else:
    # No format specified, so pretty print it
    fmt = "%10s | %10s | %20s | %20s | %20s | %20s | %20s"

    print(fmt %
          ("Sequence #", "Term #", "Current Term",
           "Predicted Term 1", "Predicted Term 2", "Predicted Term 3", "Predicted Term 3"))
    print("-----------------------------------"
          "-----------------------------------"
          "-----------------------------------"
          "-----------------------------------")

  s = 1
  t = 1

  with open(filename) as f:
    for line in f:
      line = "".join([c for c in line if c not in exclusions])
      strings = line.split(" ")

      for string in strings:
        if not len(string):
          continue

        term = Term().createFromString(string)
        prediction = model.feedTerm(term)
        closestStrings = prediction.closestStrings()
        closestStringsIter = iter(closestStrings)

        print(fmt %
              (s, t, string,
               next(closestStringsIter, ""),
               next(closestStringsIter, ""),
               next(closestStringsIter, ""),
               next(closestStringsIter, "")))

        t += 1

      if model.canCheckpoint():
        model.save()

      if resetSequences:
        model.resetSequence()

      s += 1
      t = 1
Exemplo n.º 6
0
    def test_createFromString(self):
        # Test enablePlaceholder
        term = Term().createFromString("thisisaninvalidterm",
                                       enablePlaceholder=False)
        self.assertEqual(sum(term.toArray()), 0)

        term = Term().createFromString("thisisaninvalidterm",
                                       enablePlaceholder=True)
        self.assertGreater(sum(term.toArray()), 0)
        self.assertGreater(term.sparsity, 0)
        placeholder = term.bitmap

        # Make sure we get the same placeholder back for the same term
        term = Term().createFromString("thisisaninvalidterm",
                                       enablePlaceholder=True)
        self.assertEqual(term.bitmap, placeholder)

        # Make sure we get a different placeholder back for a different term
        term = Term().createFromString("differentinvalidterm",
                                       enablePlaceholder=True)
        self.assertNotEqual(term.bitmap, placeholder)
Exemplo n.º 7
0
  def test_training(self):
    term0 = Term().createFromString("the")
    term1 = Term().createFromString("fox")
    term2 = Term().createFromString("eats")
    term3 = Term().createFromString("rodent")

    model = Model()

    prediction = model.feedTerm(term0)
    self.assertFalse(len(prediction.bitmap))

    for _ in range(5):
      model.feedTerm(term1)
      model.feedTerm(term2)
      model.feedTerm(term3)
      model.resetSequence()

    model.feedTerm(term1)
    prediction = model.feedTerm(term2)

    self.assertEqual(prediction.closestString(), "rodent")
Exemplo n.º 8
0
  def POST(self, uid, string):
    model = getModel(uid)
    term = Term().createFromString(string)

    prediction = model.feedTerm(term)
    model.save()

    web.header('Content-Type', 'application/json')
    return json.dumps([{
      "type": "term",
      "term": {
        "string": prediction.closestString()
      }
    }])
Exemplo n.º 9
0
  def test_checkpoint(self):
    model1 = Model(checkpointDir=MODEL_CHECKPOINT_DIR)
    term = Term().createFromString("fox")

    for _ in range(5):
      prediction = model1.feedTerm(term)

    self.assertTrue(len(prediction.bitmap))
    model1.save()

    model2 = Model(checkpointDir=MODEL_CHECKPOINT_DIR)
    model2.load()

    prediction = model2.feedTerm(term)

    self.assertTrue(len(prediction.bitmap))
Exemplo n.º 10
0
  def POST(self, uid, string):
    model = getModel(uid)
    term = Term().createFromString(string)
    learning = False if web.input().learning == "false" else True
    prediction = model.feedTerm(term, learning)
    model.save()

    closestStrings = prediction.closestStrings()

    web.header('Content-Type', 'application/json')
    return json.dumps([{
      "type": "term",
      "term": {
        "string": string
      }
    } for string in closestStrings])
Exemplo n.º 11
0
  def feedTerm(self, term, learn=True):
    """ Feed a Term to model, returning next predicted Term """
    tp = self.tp
    array = numpy.array(term.toArray(), dtype="uint32")
    tp.resetStats()
    tp.compute(array, enableLearn = learn, computeInfOutput = True)
    #print "ret:  " + repr(ret)
    #if ret.all() == array.all():
    #  print "EQUAL to input"
    ret = tp.getStats()
    #ret = tp.printStates()

    print "ret: " + repr(ret)
    print
    print
    print "*****************************************"

    predictedCells = tp.getPredictedState()
    predictedColumns = predictedCells.max(axis=1)
    
    predictedBitmap = predictedColumns.nonzero()[0].tolist()
    return Term().createFromBitmap(predictedBitmap)
Exemplo n.º 12
0
def readFile(filename, model, resetSequences=False):
    if model.canCheckpoint() and model.hasCheckpoint():
        model.load()

    exclusions = ('!', '.', ':', ',', '"', '\'', '\n')

    print("%10s | %10s | %20s | %20s" %
          ("Sequence #", "Term #", "Current Term", "Predicted Term"))
    print("-----------------------------------"
          "-----------------------------------")

    s = 1
    t = 1

    with open(filename) as f:
        for line in f:
            line = "".join([c for c in line if c not in exclusions])
            strings = line.split(" ")

            for string in strings:
                if not len(string):
                    continue

                term = Term().createFromString(string)
                prediction = model.feedTerm(term)

                print("%10i | %10i | %20s | %20s" %
                      (s, t, string, prediction.closestString()))

                t += 1

            if model.canCheckpoint():
                model.save()

            if resetSequences:
                model.resetSequence()

            s += 1
            t = 1