Exemplo n.º 1
0
 def setUp(self):
     self.k = 40
     self.recommender = FMRecommender(p=3, k=self.k)
     self.recommender.initialize()
Exemplo n.º 2
0
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s')
    logging.root.setLevel(level=logging.INFO)
    logger.info('running %s' % ' '.join(sys.argv))

    if len(sys.argv) < 2:
        print(globals()['__doc__'] % locals())
        sys.exit(1)

    logging.info('converting data into FluRS input object')
    data = fetch_movielens(data_home=sys.argv[1], size='1m')

    logging.info('initialize recommendation model and evaluation module')
    rec = FMRecommender(
        p=sum(data.contexts.values()),  # number of dimensions of input vector
        k=40,
        l2_reg_w0=2.,
        l2_reg_w=8.,
        l2_reg_V=16.,
        learn_rate=.004)
    rec.initialize()
    evaluator = Evaluator(rec, data.can_repeat)

    n_batch_train = int(data.n_sample *
                        0.2)  # 20% for pre-training to avoid cold-start
    n_batch_test = int(data.n_sample *
                       0.1)  # 10% for evaluation of pre-training
    batch_tail = n_batch_train + n_batch_test

    # pre-train
    # 20% for batch training | 10% for batch evaluate
    # after the batch training, 10% samples are used for incremental updating
Exemplo n.º 3
0
class FMRecommenderTestCase(TestCase):
    def setUp(self):
        self.k = 40
        self.recommender = FMRecommender(p=3, k=self.k)
        self.recommender.initialize()

    def test_register_user(self):
        self.recommender.register(User(0))
        self.assertEqual(self.recommender.n_user, 1)

    def test_register_item(self):
        self.recommender.register(Item(0))
        self.assertEqual(self.recommender.n_item, 1)

    def test_update(self):
        self.recommender.register(User(0))
        self.recommender.register(Item(0))
        self.recommender.update(Event(User(0), Item(0), 1))
        self.assertEqual(self.recommender.n_user, 1)
        self.assertEqual(self.recommender.n_item, 1)

    def test_score(self):
        self.recommender.register(User(0))
        self.recommender.register(Item(0))
        self.recommender.update(Event(User(0), Item(0), 1))
        score = self.recommender.score(User(0), np.array([0]), np.array([0]))
        self.assertTrue(score >= 0.)
Exemplo n.º 4
0
with open('h.pickle', 'wb') as f:
    pickle.dump(h, f)
with open('data.pickle', 'wb') as f:
    pickle.dump(data, f)

if os.path.exists('model.pickle'):
    print('Using pickled model')
    with open('model.pickle', 'rb') as f:
        rec = pickle.load(f)
else:
    print('Training...')
    rec = FMRecommender(
        p=sum(data.contexts.values()),  # number of dimensions of input vector
        k=60,
        l2_reg_w0=2.,
        l2_reg_w=8.,
        l2_reg_V=16.,
        learn_rate=.004)
    rec.initialize()

    n_batch_train = int(data.n_sample * 0.9)

    evaluator = Evaluator(rec, data.can_repeat)
    evaluator.debug = True
    evaluator.fit(data.samples[:n_batch_train],
                  data.samples[n_batch_train:],
                  n_epoch=4)
    print('Done training!')
    with open('model.pickle', 'wb') as f:
        pickle.dump(rec, f)