Exemplo n.º 1
0
def get_indices(resources, indices):
  from flyingpigeon.utils import sort_by_filename, calc_grouping, drs_filename
  from flyingpigeon.ocgis_module import call
  from flyingpigeon.indices import indice_variable, calc_indice_simple

  #names = [drs_filename(nc, skip_timestamp=False, skip_format=False, 
  #               variable=None, rename_file=True, add_file_path=True) for nc in resources]
  
  ncs = sort_by_filename(resources, historical_concatination=True)
  ncs_indices = []
  logger.info('resources sorted found %s datasets' % len(ncs.keys()) ) 
  for key in ncs.keys():
    for indice in indices:
      try: 
        name , month = indice.split('_')
        variable=key.split('_')[0]
        # print name, month , variable 
        if variable == indice_variable(name):
          logger.info('calculating indice %s ' % indice)
          prefix=key.replace(variable, name).replace('_day_','_%s_' % month)
          nc = calc_indice_simple(resource=ncs[key], variable=variable, prefix=prefix, indices=name,  groupings=month, memory_limit=500)
          
          #grouping = calc_grouping(month)
          #calc = [{'func' : 'icclim_' + name, 'name' : name}] 
          #nc = call(resource=ncs[key], variable=variable, calc=calc, calc_grouping=grouping, prefix=prefix , memory_limit=500) #memory_limit=500
          
          ncs_indices.append(nc[0])
          logger.info('Successful calculated indice %s %s' % (key, indice))
      except Exception as e: 
        logger.exception('failed to calculate indice %s %s' % (key, indice))    
  return ncs_indices
Exemplo n.º 2
0
    def execute(self):
        from flyingpigeon.ocgis_module import call
        from flyingpigeon.utils import sort_by_filename, archive, get_values, get_time

        ncs = self.getInputValues(identifier='resource')
        logger.info("ncs: %s " % ncs)
        coords = self.getInputValues(identifier='coords')
        logger.info("coords %s", coords)
        filenames = []
        nc_exp = sort_by_filename(ncs, historical_concatination=True)

        from numpy import savetxt, column_stack
        from shapely.geometry import Point

        for key in nc_exp.keys():
            try:
                logger.info('start calculation for %s ' % key)
                ncs = nc_exp[key]
                times = get_time(ncs, format='%Y-%m-%d_%H:%M:%S')
                concat_vals = times  # ['%s-%02d-%02d_%02d:%02d:%02d' %
                # (t.year, t.month, t.day, t.hour, t.minute, t.second) for t in times]
                header = 'date_time'
                filename = '%s.csv' % key
                filenames.append(filename)

                for p in coords:
                    try:
                        self.status.set('processing point : {0}'.format(p), 20)
                        # define the point:
                        p = p.split(',')
                        point = Point(float(p[0]), float(p[1]))

                        # get the values
                        timeseries = call(resource=ncs,
                                          geom=point,
                                          select_nearest=True)
                        vals = get_values(timeseries)

                        # concatenation of values
                        header = header + ',%s-%s' % (p[0], p[1])
                        concat_vals = column_stack([concat_vals, vals])
                    except Exception as e:
                        logger.debug('failed for point %s %s' % (p, e))
                self.status.set(
                    '*** all points processed for {0} ****'.format(key), 50)
                savetxt(filename,
                        concat_vals,
                        fmt='%s',
                        delimiter=',',
                        header=header)
            except Exception as e:
                logger.debug('failed for %s %s' % (key, e))

    # set the outputs
        self.status.set('*** creating output tar archive ****', 90)
        tarout_file = archive(filenames)
        self.tarout.setValue(tarout_file)
    def _handler(self, request, response):

        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        response.update_status('Start process', 0)

        try:
            LOGGER.info('reading the arguments')
            resources = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))
            indices = [inpt.data for inpt in request.inputs['indices']]
            LOGGER.debug("indices = %s", indices)
            archive_format = request.inputs['archive_format'][0].data
        except:
            msg = 'failed to read the arguments.'
            LOGGER.exception(msg)
            raise Exception(msg)
        LOGGER.info('indices %s ' % indices)

        #################################
        # calculate the climate indices
        #################################

        # indices calculation
        ncs_indices = None
        datasets = sort_by_filename(resources, historical_concatination=True)
        LOGGER.debug("datasets=%s", datasets.keys())

        for ds_name in datasets:
            try:
                response.update_status('calculation of {}'.format(ds_name), 30)
                # TODO: what is happening with the results for each ds?
                ncs_indices = sdm.get_indices(resource=datasets[ds_name],
                                              indices=indices)
            except:
                msg = 'indice calculation failed for {}'.format(ds_name)
                LOGGER.exception(msg)
                raise Exception(msg)

        # archive multiple output files to one archive file
        try:
            archive_indices = archive(ncs_indices, format=archive_format)
            LOGGER.info('indices 3D added to tarfile')
        except:
            msg = 'failed adding indices to tar'
            LOGGER.exception(msg)
            raise Exception(msg)

        response.outputs['output_indices'].file = archive_indices

        i = next((i for i, x in enumerate(ncs_indices) if x), None)
        response.outputs['ncout'].file = ncs_indices[i]

        response.update_status('done', 100)
        return response
Exemplo n.º 4
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        ncs = archiveextract(
            resource=rename_complexinputs(request.inputs['resource']))
        LOGGER.info('ncs: {}'.format(ncs))

        coords = []
        for coord in request.inputs['coords']:
            coords.append(coord.data)

        LOGGER.info('coords {}'.format(coords))
        filenames = []
        nc_exp = sort_by_filename(ncs, historical_concatination=True)

        for key in nc_exp.keys():
            try:
                LOGGER.info('start calculation for {}'.format(key))
                ncs = nc_exp[key]
                times = get_time(ncs)  # , format='%Y-%m-%d_%H:%M:%S')
                concat_vals = times  # ['%s-%02d-%02d_%02d:%02d:%02d' %
                # (t.year, t.month, t.day, t.hour, t.minute, t.second) for t in times]
                header = 'date_time'
                filename = '{}.csv'.format(key)
                filenames.append(filename)

                for p in coords:
                    try:
                        response.update_status('processing point: {}'.format(p), 20)
                        # define the point:
                        p = p.split(',')
                        point = Point(float(p[0]), float(p[1]))

                        # get the values
                        timeseries = call(resource=ncs, geom=point, select_nearest=True)
                        vals = get_values(timeseries)

                        # concatenation of values
                        header = header + ',{}-{}'.format(p[0], p[1])
                        concat_vals = column_stack([concat_vals, vals])
                    except Exception as e:
                        LOGGER.debug('failed for point {} {}'.format(p, e))
                response.update_status('*** all points processed for {0} ****'.format(key), 50)

                # TODO: Ascertain whether this 'savetxt' is a valid command without string formatting argument: '%s'
                savetxt(filename, concat_vals, fmt='%s', delimiter=',', header=header)
            except Exception as ex:
                LOGGER.debug('failed for {}: {}'.format(key, str(ex)))

        # set the outputs
        response.update_status('*** creating output tar archive ****', 90)
        tarout_file = archive(filenames)
        response.outputs['tarout'].file = tarout_file
        return response
Exemplo n.º 5
0
  def execute(self):
    from flyingpigeon.ocgis_module import call
    from flyingpigeon.utils import sort_by_filename, archive, get_values, get_time
        
    ncs = self.getInputValues(identifier='netcdf_file')
    logger.info("ncs: %s " % ncs) 
    coords = self.getInputValues(identifier='coords')
    logger.info("coords %s", coords)
    filenames = []    
    nc_exp = sort_by_filename(ncs, historical_concatination=True)
    
    #(fp_tar, tarout_file) = tempfile.mkstemp(dir=".", suffix='.tar')
    #tar = tarfile.open(tarout_file, "w")

    from numpy import savetxt, column_stack
    from shapely.geometry import Point
    
    for key in nc_exp.keys():
      try:
        logger.info('start calculation for %s ' % key )
        ncs = nc_exp[key]
        times = get_time(ncs)
        concat_vals = ['%s-%02d-%02d_%02d:%02d:%02d' %
                       (t.year, t.month, t.day, t.hour, t.minute, t.second) for t in times]
        header = 'date_time'
        filename = '%s.csv' % key
        filenames.append(filename) 
        
        for p in coords:
          try: 
            self.status.set('processing point : {0}'.format(p), 20)
            # define the point:  
            p = p.split(',')
            point = Point(float(p[0]), float(p[1]))       
            
            # get the values
            timeseries = call(resource=ncs, geom=point, select_nearest=True)
            vals = get_values(timeseries)
            
            # concatination of values 
            header = header + ',%s-%s' % (p[0], p[1])
            concat_vals = column_stack([concat_vals, vals])
          except Exception as e: 
            logger.debug('failed for point %s %s' % (p , e))
        self.status.set('*** all points processed for {0} ****'.format(key), 50)
        savetxt(filename, concat_vals, fmt='%s', delimiter=',', header=header)
      except Exception as e: 
        logger.debug('failed for %s %s' % (key, e))

    ### set the outputs
    self.status.set('*** creating output tar archive ****',90) 
    tarout_file = archive(filenames)
    self.tarout.setValue( tarout_file )
Exemplo n.º 6
0
  def execute(self):
    from flyingpigeon.ocgis_module import call
    from flyingpigeon.utils import get_time, get_variable, sort_by_filename
    
    from datetime import datetime as dt
    from netCDF4 import Dataset
    from numpy import savetxt, column_stack, squeeze
    
    ncs = self.getInputValues(identifier='netcdf_file')
    logging.info("ncs: %s " % ncs) 
    coords = self.getInputValues(identifier='coords')
    logging.info("coords %s", coords)

 
    nc_exp = sort_by_filename(ncs) # dictionary {experiment:[files]}
    filenames = []
    
    (fp_tar, tarout_file) = tempfile.mkstemp(dir=".", suffix='.tar')
    tar = tarfile.open(tarout_file, "w")
    
    for key in nc_exp.keys():
      logging.info('start calculation for %s ' % key )
      ncs = nc_exp[key]
      nc = ncs[0]
      
      times = get_time(nc)
      var = get_variable(nc)
      
      concat_vals = [dt.strftime(t, format='%Y-%d-%m_%H:%M:%S') for t in times]
      header = 'date_time'
      filename = '%s.csv' % key
      filenames.append(filename) 
      
      for ugid, p in enumerate(coords, start=1):
        self.status.set('processing point : {0}'.format(p), 20)
        p = p.split(',')
        self.status.set('splited x and y coord : {0}'.format(p), 20)
        point = Point(float(p[0]), float(p[1]))
        
        #get the timeseries at gridpoint
        timeseries = call(resource=ncs, geom=point, select_nearest=True)
        
        ds = Dataset(timeseries)
        vals = squeeze(ds.variables[var])
        header = header + ',%s_%s' % (p[0], p[1])
        concat_vals = column_stack([concat_vals, vals])

      savetxt(filename, concat_vals, fmt='%s', delimiter=',', header=header)
      tar.add( filename )
      
    tar.close()
    self.tarout.setValue( tarout_file )
Exemplo n.º 7
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        ncs = archiveextract(
            resource=rename_complexinputs(request.inputs['resource']))
        LOGGER.info("ncs: %s " % ncs)
        coords = request.inputs['coords']  # self.getInputValues(identifier='coords')
        LOGGER.info("coords %s", coords)
        filenames = []
        nc_exp = sort_by_filename(ncs, historical_concatination=True)

        for key in nc_exp.keys():
            try:
                LOGGER.info('start calculation for %s ' % key)
                ncs = nc_exp[key]
                times = get_time(ncs, format='%Y-%m-%d_%H:%M:%S')
                concat_vals = times  # ['%s-%02d-%02d_%02d:%02d:%02d' %
                # (t.year, t.month, t.day, t.hour, t.minute, t.second) for t in times]
                header = 'date_time'
                filename = '%s.csv' % key
                filenames.append(filename)

                for p in coords:
                    try:
                        response.update_status('processing point : {0}'.format(p), 20)
                        # define the point:
                        p = p.split(',')
                        point = Point(float(p[0]), float(p[1]))

                        # get the values
                        timeseries = call(resource=ncs, geom=point, select_nearest=True)
                        vals = get_values(timeseries)

                        # concatenation of values
                        header = header + ',%s-%s' % (p[0], p[1])
                        concat_vals = column_stack([concat_vals, vals])
                    except Exception as e:
                        LOGGER.debug('failed for point %s %s' % (p, e))
                response.update_status('*** all points processed for {0} ****'.format(key), 50)
                savetxt(filename, concat_vals, fmt='%s', delimiter=',', header=header)
            except Exception as e:
                LOGGER.debug('failed for %s %s' % (key, e))

    # set the outputs
        response.update_status('*** creating output tar archive ****', 90)
        tarout_file = archive(filenames)
        response.outputs['tarout'].file = tarout_file
        return response
Exemplo n.º 8
0
def get_indices(resources, indices):
    """
    calculating indices (netCDF files) defined in _SDMINDICES_

    :param resources:
    :param indices: indices defined in _SDMINDICES_

    :return list: list of filepathes to netCDF files
    """

    from flyingpigeon.utils import sort_by_filename, calc_grouping, drs_filename, unrotate_pole
    # from flyingpigeon.ocgis_module import call
    from flyingpigeon.indices import indice_variable, calc_indice_simple

    # names = [drs_filename(nc, skip_timestamp=False, skip_format=False,
    #               variable=None, rename_file=True, add_file_path=True) for nc in resources]

    ncs = sort_by_filename(resources, historical_concatination=True)
    ncs_indices = []
    logger.info('resources sorted found %s datasets' % len(ncs.keys()))
    for key in ncs.keys():
        for indice in indices:
            try:
                name, month = indice.split('_')
                variable = key.split('_')[0]
                # print name, month , variable
                if variable == indice_variable(name):
                    logger.info('calculating indice %s ' % indice)
                    prefix = key.replace(variable, name).replace('_day_', '_%s_' % month)
                    nc = calc_indice_simple(resource=ncs[key],
                                            variable=variable,
                                            polygons=['Europe', 'Africa', 'Asia', 'North America', 'Oceania',
                                                      'South America', 'Antarctica'],
                                            mosaic=True,
                                            prefix=prefix, indices=name, groupings=month)
                    if nc is not None:
                        coords = unrotate_pole(nc[0], write_to_file=True)
                        ncs_indices.append(nc[0])
                        logger.info('Successful calculated indice %s %s' % (key, indice))
                    else:
                        msg = 'failed to calculate indice %s %s' % (key, indice)
                        logger.exception(msg)
            except:
                msg = 'failed to calculate indice %s %s' % (key, indice)
                logger.exception(msg)
                raise
    return ncs_indices
Exemplo n.º 9
0
def aggregatTime(resource=[], variable=None, frequency=None, prefix=None, grouping='mon', calculation='mean', historical_concatination=True):
  """
  Aggregates over the time axis. 

  :param resource: input netCDF files
  :param variable: variable to be used from resource 
  :param frequency: time frequency in resource
  :param grouping: time aggregation for output
  :param prefix: file name prefix
  :param calculation: calculation methode (default = mean )
  :param historical_concatination: if rcps and appropriate historical runs are present thy are concatinated 
  :return: path to netCDF file
  """ 
  try: 
    ncs = sort_by_filename(resource, historical_concatination=historical_concatination)
    group = calc_grouping(grouping=grouping)
  except Exception as e: 
    logger.exception('failed to determine ncs or calc_grouping')
    raise  
  
  if len(ncs.keys())!= 1: 
    logger.exception('None or more than one data experiments found in resource')
    raise Exception('None or more than one data experiments found in resource') 

  for key in ncs.keys()[0:1]:
    try:
      if frequency == None: 
        frequency = get_frequency(ncs[key][0])
      if variable == None: 
        variable = get_variable(ncs[key][0])

      meta_attrs = { 'field': {'frequency': grouping}}# 'variable': {'new_attribute': 5, 'hello': 'attribute'},
      calc = [{'func' : calculation , 'name' : variable, 'meta_attrs': meta_attrs}] 
      logger.info('calculation:  %s ' % (calc))
      if prefix == None:
        prefix = key.replace(frequency,grouping)
      
      logger.info('prefix:  %s ' % (prefix))
      output = call(resource=ncs[key], variable=None, 
      calc=calc, calc_grouping=group,
      prefix=prefix )
      logger.info('time aggregation done for %s '% (key))
    except Exception as e: 
      logger.exception('time aggregation failed for %s' % key)
      raise

  return output #  key # output
Exemplo n.º 10
0
def get_indices(resources, indices):
    from flyingpigeon.utils import sort_by_filename, calc_grouping, drs_filename
    from flyingpigeon.ocgis_module import call
    from flyingpigeon.indices import indice_variable, calc_indice_simple

    #names = [drs_filename(nc, skip_timestamp=False, skip_format=False,
    #               variable=None, rename_file=True, add_file_path=True) for nc in resources]

    ncs = sort_by_filename(resources, historical_concatination=True)
    ncs_indices = []
    logger.info('resources sorted found %s datasets' % len(ncs.keys()))
    for key in ncs.keys():
        for indice in indices:
            try:
                name, month = indice.split('_')
                variable = key.split('_')[0]
                # print name, month , variable
                if variable == indice_variable(name):
                    logger.info('calculating indice %s ' % indice)
                    prefix = key.replace(variable,
                                         name).replace('_day_', '_%s_' % month)
                    nc = calc_indice_simple(resource=ncs[key],
                                            variable=variable,
                                            prefix=prefix,
                                            indices=name,
                                            groupings=month,
                                            memory_limit=500)

                    #grouping = calc_grouping(month)
                    #calc = [{'func' : 'icclim_' + name, 'name' : name}]
                    #nc = call(resource=ncs[key], variable=variable, calc=calc, calc_grouping=grouping, prefix=prefix , memory_limit=500) #memory_limit=500

                    ncs_indices.append(nc[0])
                    logger.info('Successful calculated indice %s %s' %
                                (key, indice))
            except Exception as e:
                logger.exception('failed to calculate indice %s %s' %
                                 (key, indice))
    return ncs_indices
Exemplo n.º 11
0
def get_yrmean(resource=[]):
    """
  calculation of annual mean temperature and clipping Europe 
  
  :param resource: list or netCDF tas input files
  
  :return list: list of output files 
  """

    from flyingpigeon.utils import calc_grouping, sort_by_filename
    from flyingpigeon.ocgis_module import call
    from flyingpigeon.subset import clipping
    ncs = sort_by_filename(resource)
    nc_tasmean = []

    try:
        for key in ncs.keys():
            try:
                logger.info('process %s' % (key))
                calc = [{'func': 'mean', 'name': 'tas'}]
                calc_group = calc_grouping('yr')
                prefix = key.replace(key.split('_')[7], 'yr')
                nc_tasmean.append(
                    clipping(resource=ncs[key],
                             variable='tas',
                             calc=calc,
                             calc_grouping=calc_group,
                             prefix=prefix,
                             polygons='Europe')[0])
                logger.info('clipping and mean tas calculation done for %s' %
                            (key))
            except Exception as e:
                logger.debug('mean tas calculation failed for %s : %s ' %
                             (key, e))
    except Exception as e:
        logger.debug('clipping failed for %s: %s' % (key, e))
    return nc_tasmean
Exemplo n.º 12
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        try:
            resources = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))
            # indices = request.inputs['indices'][0].data

            grouping = request.inputs['grouping'][0].data
            # grouping = [inpt.data for inpt in request.inputs['grouping']]

            if 'region' in request.inputs:
                region = request.inputs['region'][0].data
            else:
                region = None

            if 'mosaic' in request.inputs:
                mosaic = request.inputs['mosaic'][0].data
            else:
                mosaic = False

            percentile = request.inputs['percentile'][0].data
            # refperiod = request.inputs['refperiod'][0].data

            from datetime import datetime as dt
            #
            # if refperiod is not None:
            #     start = dt.strptime(refperiod.split('-')[0], '%Y%m%d')
            #     end = dt.strptime(refperiod.split('-')[1], '%Y%m%d')
            #     refperiod = [start, end]

            # response.update_status('starting: indices=%s, grouping=%s, num_files=%s'
            #                        % (indices,  grouping, len(resources)), 2)

            LOGGER.debug("grouping %s " % grouping)
            LOGGER.debug("mosaic %s " % mosaic)
            # LOGGER.debug("refperiod set to %s, %s " % (start, end))
            # LOGGER.debug('indices= %s ' % indices)
            LOGGER.debug('percentile: %s' % percentile)
            LOGGER.debug('region %s' % region)
            LOGGER.debug('Nr of input files %s ' % len(resources))

        except Exception as e:
            LOGGER.exception("failed to read in the arguments: %s" % e)

        from flyingpigeon.utils import sort_by_filename
        from flyingpigeon.ocgis_module import call

        datasets = sort_by_filename(resources, historical_concatination=True)
        results = []

        kwds = {'percentile': percentile, 'window_width': 5}
        calc = [{'func': 'daily_perc', 'name': 'dp', 'kwds': kwds}]
        #
        # ops = OcgOperations(dataset=rd, calc=calc,
        #                     output_format='nc',
        #                     time_region={'year': [1980, 1990]}
        #                     ).execute()
        try:
            for key in datasets.keys():
                try:
                    result = calc(
                        resource=datasets[key],
                        calc=calc,
                        #   calc_grouping='year'
                    )
                    LOGGER.debug('percentile based indice done for %s' %
                                 result)
                    results.extend(result)
                except Exception as e:
                    LOGGER.exception(
                        "failed to calculate percentile based indice for %s: %s"
                        % key, e)
        except Exception as e:
            LOGGER.exception("failed to calculate percentile indices: %s" % e)

        output_archive = archive(results)

        response.outputs['output_archive'].file = output_archive

        i = next((i for i, x in enumerate(results) if x), None)
        if i is None:
            i = "dummy.nc"
        response.outputs['ncout'].file = results[i]

        response.update_status("done", 100)
        return response
Exemplo n.º 13
0
def clipping(resource=[],
             variable=None,
             dimension_map=None,
             calc=None,
             output_format='nc',
             calc_grouping=None,
             time_range=None,
             time_region=None,
             historical_concatination=True,
             prefix=None,
             spatial_wrapping='wrap',
             polygons=None,
             mosaic=False,
             dir_output=None,
             memory_limit=None):
    """ returns list of clipped netCDF files

    :param resource: list of input netCDF files
    :param variable: variable (string) to be used in netCDF
    :param dimesion_map: specify a dimension map if input netCDF has unconventional dimension
    :param calc: ocgis calculation argument
    :param calc_grouping: ocgis calculation grouping
    :param historical_concatination: concat files of RCPs with appropriate historical runs into one timeseries
    :param prefix: prefix for output file name
    :param polygons: list of polygons to be used. If more than 1 in the list, an appropriate mosaic will be clipped
    :param mosaic: Whether the polygons are aggregated into a single geometry (True) or individual files are created for each geometry (False).
    :param output_format: output_format (default='nc')
    :param dir_output: specify an output location
    :param time_range: [start, end] of time subset
    :param time_region: year, months or days to be extracted in the timeseries

    :returns list: path to clipped files
    """

    if type(resource) != list:
        resource = list([resource])
    if type(polygons) != list:
        polygons = list([polygons])
    if prefix is not None:
        if type(prefix) != list:
            prefix = list([prefix])

    geoms = set()
    ncs = sort_by_filename(resource,
                           historical_concatination=historical_concatination
                           )  # historical_concatenation=True
    geom_files = []
    if mosaic is True:
        try:
            nameadd = '_'
            for polygon in polygons:
                geoms.add(get_geom(polygon))
                nameadd = nameadd + polygon.replace(' ', '')
            if len(geoms) > 1:
                LOGGER.error(
                    'polygons belong to different shapefiles! mosaic option is not possible %s',
                    geoms)
            else:
                geom = geoms.pop()
            ugids = get_ugid(polygons=polygons, geom=geom)
        except:
            LOGGER.exception('geom identification failed')
        for i, key in enumerate(ncs.keys()):
            try:
                # if variable is None:
                variable = get_variable(ncs[key])
                LOGGER.info('variable %s detected in resource' % (variable))
                if prefix is None:
                    name = key + nameadd
                else:
                    name = prefix[i]
                geom_file = call(resource=ncs[key],
                                 variable=variable,
                                 calc=calc,
                                 calc_grouping=calc_grouping,
                                 output_format=output_format,
                                 prefix=name,
                                 geom=geom,
                                 select_ugid=ugids,
                                 time_range=time_range,
                                 time_region=time_region,
                                 spatial_wrapping=spatial_wrapping,
                                 memory_limit=memory_limit,
                                 dir_output=dir_output,
                                 dimension_map=dimension_map)
                geom_files.append(geom_file)
                LOGGER.info('ocgis mosaik clipping done for %s ' % (key))
            except:
                msg = 'ocgis mosaik clipping failed for %s ' % (key)
                LOGGER.exception(msg)
    else:
        for i, polygon in enumerate(polygons):
            try:
                geom = get_geom(polygon)
                ugid = get_ugid(polygons=polygon, geom=geom)
                for key in ncs.keys():
                    try:
                        # if variable is None:
                        variable = get_variable(ncs[key])
                        LOGGER.info('variable %s detected in resource' %
                                    (variable))
                        if prefix is None:
                            name = key + '_' + polygon.replace(' ', '')
                        else:
                            name = prefix[i]
                        geom_file = call(
                            resource=ncs[key],
                            variable=variable,
                            calc=calc,
                            calc_grouping=calc_grouping,
                            output_format=output_format,
                            prefix=name,
                            geom=geom,
                            select_ugid=ugid,
                            dir_output=dir_output,
                            dimension_map=dimension_map,
                            spatial_wrapping=spatial_wrapping,
                            memory_limit=memory_limit,
                            time_range=time_range,
                            time_region=time_region,
                        )
                        geom_files.append(geom_file)
                        LOGGER.info('ocgis clipping done for %s ' % (key))
                    except:
                        msg = 'ocgis clipping failed for %s ' % (key)
                        LOGGER.exception(msg)
            except:
                LOGGER.exception('geom identification failed')
    return geom_files
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        try:
            resources = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))

            if 'region' in request.inputs:
                region = request.inputs['region'][0].data
            else:
                region = None

            if 'mosaic' in request.inputs:
                mosaic = request.inputs['mosaic'][0].data
            else:
                mosaic = False

            percentile = request.inputs['percentile'][0].data

            LOGGER.debug("mosaic %s " % mosaic)
            LOGGER.debug('percentile: %s' % percentile)
            LOGGER.debug('region %s' % region)
            LOGGER.debug('Nr of input files %s ' % len(resources))

        except:
            LOGGER.exception('failed to read in the arguments')

        from flyingpigeon.utils import sort_by_filename
        from flyingpigeon.ocgis_module import call

        datasets = sort_by_filename(resources, historical_concatination=True)
        results = []

        kwds = {'percentile': 90, 'window_width': 5}
        calc = [{'func': 'daily_perc', 'name': 'dp', 'kwds': kwds}]

        try:
            for key in datasets.keys():
                try:
                    if region is None:
                        result = call(
                            resource=datasets[key],
                            output_format='nc',
                            calc=calc,
                            # prefix=key,
                            # time_region={'year': [1995, 2000]}
                            # calc_grouping='year'
                        )
                        results.extend([result])
                        LOGGER.debug('percentile based indice done for %s' %
                                     result)
                    else:
                        result = clipping(
                            resource=datasets[key],
                            #  variable=None,
                            calc=calc,
                            #  calc_grouping=None,
                            #  time_range=None,
                            #  time_region=None,
                            polygons=region,
                            mosaic=mosaic)
                        results.extend(result)
                except:
                    LOGGER.exception(
                        "failed to calculate percentil based indice for %s " %
                        key)
        except:
            LOGGER.exception("failed to calculate percentile indices")

        tarf = archive(results)

        response.outputs['output_archive'].file = tarf

        i = next((i for i, x in enumerate(results) if x), None)
        if i is None:
            i = "dummy.nc"
        response.outputs['ncout'].file = results[i]

        #       response.update_status("done", 100)
        response.update_status("done", 100)
        return response
Exemplo n.º 15
0
def calc_indice_percentile(resources=[],
                           variable=None,
                           prefix=None,
                           indices='TG90p',
                           refperiod=None,
                           groupings='yr',
                           polygons=None,
                           percentile=90,
                           mosaic=False,
                           dir_output=None,
                           dimension_map=None):
    """
    Calculates given indices for suitable files in the appropriate time grouping and polygon.

    :param resource: list of filenames in data reference syntax (DRS) convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: list of indices (default ='TG90p')
    :param prefix: filename prefix
    :param refperiod: reference period tuple = (start,end)
    :param grouping: indices time aggregation (default='yr')
    :param dir_output: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into out_dir.
    """
    from os.path import join, dirname, exists
    from os import remove
    import uuid
    from numpy import ma
    from datetime import datetime as dt

    from flyingpigeon.ocgis_module import call
    from flyingpigeon.subset import clipping
    from flyingpigeon.utils import get_values, get_time

    if type(resources) != list:
        resources = list([resources])
    if type(indices) != list:
        indices = list([indices])

    if type(groupings) != list:
        groupings = list([groupings])

    if type(refperiod) == list:
        refperiod = refperiod[0]

    if refperiod is None:
        start = dt.strptime(refperiod.split('-')[0], '%Y%m%d')
        end = dt.strptime(refperiod.split('-')[1], '%Y%m%d')
        time_range = [start, end]
    else:
        time_range = None

    if dir_output is None:
        if not exists(dir_output):
            makedirs(dir_output)

    ################################################
    # Compute a custom percentile basis using ICCLIM
    ################################################
    from ocgis.contrib import library_icclim as lic
    nc_indices = []
    nc_dic = sort_by_filename(resources)

    for grouping in groupings:
        calc_group = calc_grouping(grouping)
        for key in nc_dic.keys():
            resource = nc_dic[key]
            if variable is None:
                variable = get_variable(resource)
            if polygons is None:
                nc_reference = call(resource=resource,
                                    prefix=str(uuid.uuid4()),
                                    time_range=time_range,
                                    output_format='nc',
                                    dir_output=dir_output)
        else:
            nc_reference = clipping(resource=resource,
                                    prefix=str(uuid.uuid4()),
                                    time_range=time_range,
                                    output_format='nc',
                                    polygons=polygons,
                                    dir_output=dir_output,
                                    mosaic=mosaic)

        arr = get_values(resource=nc_reference)
        dt_arr = get_time(resource=nc_reference)
        arr = ma.masked_array(arr)
        dt_arr = ma.masked_array(dt_arr)
        percentile = percentile
        window_width = 5

        for indice in indices:
            name = indice.replace('_', str(percentile))
            var = indice.split('_')[0]

            operation = None
            if 'T' in var:
                if percentile >= 50:
                    operation = 'Icclim%s90p' % var
                    func = 'icclim_%s90p' % var  # icclim_TG90p
                else:
                    operation = 'Icclim%s10p' % var
                    func = 'icclim_%s10p' % var

                ################################
                # load the appropriate operation
                ################################

                ops = [op for op in dir(lic) if operation in op]
                if len(ops) == 0:
                    raise Exception("operator does not exist %s", operation)

                exec "percentile_dict = lic.%s.get_percentile_dict(arr, dt_arr, percentile, window_width)" % ops[
                    0]
                calc = [{
                    'func': func,
                    'name': name,
                    'kwds': {
                        'percentile_dict': percentile_dict
                    }
                }]

                if polygons is None:
                    nc_indices.extend(
                        call(resource=resource,
                             prefix=key.replace(variable, name).replace(
                                 '_day_', '_%s_' % grouping),
                             calc=calc,
                             calc_grouping=calc_group,
                             output_format='nc',
                             dir_output=dir_output))
                else:
                    nc_indices.extend(
                        clipping(
                            resource=resource,
                            prefix=key.replace(variable, name).replace(
                                '_day_', '_%s_' % grouping),
                            calc=calc,
                            calc_grouping=calc_group,
                            output_format='nc',
                            dir_output=dir_output,
                            polygons=polygons,
                            mosaic=mosaic,
                        ))
    if len(nc_indices) is 0:
        logger.debug('No indices are calculated')
        return None
    return nc_indices
Exemplo n.º 16
0
def calc_indice_percentile(resources=[], variable=None, 
    prefix=None, indices='TG90p', refperiod=None,
    groupings='yr', polygons=None, percentile=90, mosaik = False, 
    dir_output=None, dimension_map = None):
    """
    Calculates given indices for suitable files in the appopriate time grouping and polygon.

    :param resource: list of filenames in drs convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: list of indices (default ='TG90p')
    :param prefix: filename prefix 
    :param refperiod: reference refperiod touple = (start,end)
    :param grouping: indices time aggregation (default='yr')
    :param dir_output: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into out_dir
    """
    from os.path import join, dirname, exists
    from os import remove
    import uuid
    from numpy import ma 
    from datetime import datetime as dt

    from flyingpigeon.ocgis_module import call
    from flyingpigeon.subset import clipping
    from flyingpigeon.utils import get_values, get_time
    
    if type(resources) != list: 
      resources = list([resources])
    if type(indices) != list: 
      indices = list([indices])
      
    if type(groupings) != list: 
      groupings = list([groupings])
      
    if type(refperiod) == list: 
      refperiod = refperiod[0]
      
    if refperiod != None:
      start = dt.strptime(refperiod.split('-')[0] , '%Y%m%d')
      end = dt.strptime(refperiod.split('-')[1] , '%Y%m%d')
      time_range = [start, end]
    else:  
      time_range = None
    
    if dir_output != None:
      if not exists(dir_output): 
        makedirs(dir_output)
    
    ########################################################################################################################
    # Compute a custom percentile basis using ICCLIM. ######################################################################
    ########################################################################################################################

    from ocgis.contrib import library_icclim  as lic 
    nc_indices = []
    nc_dic = sort_by_filename(resources)
    
    for grouping in groupings:
      calc_group = calc_grouping(grouping)
      for key in nc_dic.keys():
        resource = nc_dic[key]
        if variable == None: 
          variable = get_variable(resource)
        if polygons == None:
          nc_reference = call(resource=resource, 
            prefix=str(uuid.uuid4()), 
            time_range=time_range,
            output_format='nc', 
            dir_output=dir_output)
        else:
          nc_reference = clipping(resource=resource, 
            prefix=str(uuid.uuid4()),
            time_range=time_range, 
            output_format='nc', 
            polygons=polygons,
            dir_output=dir_output, 
            mosaik = mosaik)
          
        arr = get_values(nc_files=nc_reference)
        dt_arr = get_time(nc_files=nc_reference)
        arr = ma.masked_array(arr)
        dt_arr = ma.masked_array(dt_arr)
        percentile = percentile
        window_width = 5
        
        for indice in indices:
          name = indice.replace('_', str(percentile))
          var = indice.split('_')[0]

          operation = None
          if 'T' in var: 
            if percentile >= 50: 
              operation = 'Icclim%s90p' % var
              func = 'icclim_%s90p' % var # icclim_TG90p
            else: 
              operation = 'Icclim%s10p' % var
              func = 'icclim_%s10p' % var
              
          ################################
          # load the appropriate operation
          ################################

          ops = [op for op in dir(lic) if operation in op]
          if len(ops) == 0:
              raise Exception("operator does not exist %s", operation)
          
          exec "percentile_dict = lic.%s.get_percentile_dict(arr, dt_arr, percentile, window_width)" % ops[0]
          calc = [{'func': func, 'name': name, 'kwds': {'percentile_dict': percentile_dict}}]
          
          if polygons == None:
            nc_indices.append(call(resource=resource, 
                                prefix=key.replace(variable,name).replace('_day_', '_%s_' % grouping), 
                                calc=calc, 
                                calc_grouping=calc_group, 
                                output_format='nc',
                                dir_output=dir_output))
          else: 
            nc_indices.extend(clipping(resource=resource, 
                                prefix=key.replace(variable,name).replace('_day_', '_%s_' % grouping), 
                                calc=calc, 
                                calc_grouping=calc_group, 
                                output_format='nc',
                                dir_output=dir_output,
                                polygons=polygons, 
                                mosaik = mosaik,
                                ))
    return nc_indices
Exemplo n.º 17
0
def calc_indice_unconventional(resource=[], variable=None, prefix=None,
  indices=None, polygons=None,  groupings=None, 
  dir_output=None, dimension_map = None):
    """
    Calculates given indices for suitable files in the appopriate time grouping and polygon.

    :param resource: list of filenames in drs convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: list of indices (default ='TGx')
    :param polygons: list of polgons (default =None)
    :param grouping: indices time aggregation (default='yr')
    :param out_dir: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into dir_output
    """
    
    from os.path import join, dirname, exists
    from os import remove
    import uuid
    from flyingpigeon import ocgis_module
    from flyingpigeon.subset import get_ugid, get_geom

    if type(resource) != list: 
      resource = list([resource])
    if type(indices) != list: 
      indices = list([indices])
    if type(polygons) != list and polygons != None:
      polygons = list([polygons])
    elif polygons == None:
      polygons = [None]
    else: 
      logger.error('Polygons not found')
    if type(groupings) != list:
      groupings = list([groupings])
    
    if dir_output != None:
      if not exists(dir_output): 
        makedirs(dir_output)
    
    experiments = sort_by_filename(resource)
    outputs = []

    # print('environment for calc_indice_unconventional set')
    logger.info('environment for calc_indice_unconventional set')
    
    for key in experiments:
      if variable == None:
        variable = get_variable(experiments[key][0])
      try: 
        ncs = experiments[key]
        for indice in indices:
          logger.info('indice: %s' % indice)
          try: 
            for grouping in groupings:
              logger.info('grouping: %s' % grouping)
              try:
                calc_group = calc_grouping(grouping)
                logger.info('calc_group: %s' % calc_group)
                for polygon in polygons:  
                  try:
                    domain = key.split('_')[1].split('-')[0]
                    if polygon == None:
                      if prefix == None: 
                        prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping )
                      geom = None
                      ugid = None
                    else:
                      if prefix == None: 
                        prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping ).replace(domain,polygon)
                      geom = get_geom(polygon=polygon)
                      ugid = get_ugid(polygons=polygon, geom=geom)
                    if indice == 'TGx':
                      calc=[{'func': 'max', 'name': 'TGx'}]
                      tmp = ocgis_module.call(resource=ncs,# conform_units_to='celcius',
                                              variable=variable, dimension_map=dimension_map, 
                                              calc=calc, calc_grouping=calc_group, prefix=prefix,
                                              dir_output=dir_output, geom=geom, select_ugid=ugid)
                    elif indice == 'TGn':
                      calc=[{'func': 'min', 'name': 'TGn'}]
                      tmp = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
                                              variable=variable, dimension_map=dimension_map, 
                                              calc=calc, calc_grouping= calc_group, prefix=prefix,
                                               dir_output=dir_output, geom=geom, select_ugid = ugid)
                    elif indice == 'TGx5day':
                      calc = [{'func': 'moving_window', 'name': 'TGx5day', 'kwds': {'k': 5, 'operation': 'mean', 'mode': 'same' }}]
                      tmp2 = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
                                              variable=variable, dimension_map=dimension_map, 
                                              calc=calc, prefix=str(uuid.uuid4()),
                                              geom=geom, select_ugid = ugid)
                      calc=[{'func': 'max', 'name': 'TGx5day'}]
                      logger.info('moving window calculated : %s' % tmp2)
                      tmp = ocgis_module.call(resource=tmp2,
                                              variable=indice, dimension_map=dimension_map, 
                                              calc=calc, calc_grouping=calc_group, prefix=prefix,
                                              dir_output=dir_output)
                      remove(tmp2)
                    elif indice == 'TGn5day':
                      calc = [{'func': 'moving_window', 'name': 'TGn5day', 'kwds': {'k': 5, 'operation': 'mean', 'mode': 'same' }}]
                      tmp2 = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
                                              variable=variable, dimension_map=dimension_map, 
                                              calc=calc, prefix=str(uuid.uuid4()),
                                              geom=geom, select_ugid = ugid)
                      calc=[{'func': 'min', 'name': 'TGn5day'}]
                      
                      logger.info('moving window calculated : %s' % tmp2)
                      
                      tmp = ocgis_module.call(resource=tmp2,
                                              variable=indice, dimension_map=dimension_map, 
                                              calc=calc, calc_grouping=calc_group, prefix=prefix,
                                              dir_output=dir_output)
                      remove(tmp2)
                    else: 
                      logger.error('Indice %s is not a known inidce' % (indice))
                    outputs.append(tmp)
                    logger.info('indice file calcualted %s ' % (tmp))
                  except Exception as e:
                    logger.exception('could not calc indice %s for key %s, polygon %s and calc_grouping %s : %s' %  (indice, key, polygon, grouping, e ))
              except Exception as e:
                logger.exception('could not calc indice %s for key %s and calc_grouping %s : %s' % ( indice, key, polygon, e ))
          except Exception as e:
            logger.exception('could not calc indice %s for key %s: %s'%  (indice, key, e ))
      except Exception as e:
        logger.exception('could not calc key %s: %s' % (key, e))
    return outputs
Exemplo n.º 18
0
def calc_indice_percentile(resources=[],
                           variable=None,
                           prefix=None,
                           indices='TG90p',
                           refperiod=None,
                           groupings='yr',
                           polygons=None,
                           percentile=90,
                           mosaic=False,
                           dir_output=None,
                           dimension_map=None):
    """
    Calculates given indices for suitable files in the appropriate time grouping and polygon.

    :param resource: list of filenames in data reference syntax (DRS) convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: list of indices (default ='TG90p')
    :param prefix: filename prefix 
    :param refperiod: reference period tuple = (start,end)
    :param grouping: indices time aggregation (default='yr')
    :param dir_output: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into out_dir.
    """
    from os.path import join, dirname, exists
    from os import remove
    import uuid
    from numpy import ma
    from datetime import datetime as dt

    from flyingpigeon.ocgis_module import call
    from flyingpigeon.subset import clipping
    from flyingpigeon.utils import get_values, get_time

    if type(resources) != list:
        resources = list([resources])
    if type(indices) != list:
        indices = list([indices])

    if type(groupings) != list:
        groupings = list([groupings])

    if type(refperiod) == list:
        refperiod = refperiod[0]

    if refperiod != None:
        start = dt.strptime(refperiod.split('-')[0], '%Y%m%d')
        end = dt.strptime(refperiod.split('-')[1], '%Y%m%d')
        time_range = [start, end]
    else:
        time_range = None

    if dir_output != None:
        if not exists(dir_output):
            makedirs(dir_output)

    ########################################################################################################################
    # Compute a custom percentile basis using ICCLIM. ######################################################################
    ########################################################################################################################

    from ocgis.contrib import library_icclim as lic
    nc_indices = []
    nc_dic = sort_by_filename(resources)

    for grouping in groupings:
        calc_group = calc_grouping(grouping)
        for key in nc_dic.keys():
            resource = nc_dic[key]
            if variable == None:
                variable = get_variable(resource)
            if polygons == None:
                nc_reference = call(resource=resource,
                                    prefix=str(uuid.uuid4()),
                                    time_range=time_range,
                                    output_format='nc',
                                    dir_output=dir_output)
            else:
                nc_reference = clipping(resource=resource,
                                        prefix=str(uuid.uuid4()),
                                        time_range=time_range,
                                        output_format='nc',
                                        polygons=polygons,
                                        dir_output=dir_output,
                                        mosaic=mosaic)

            arr = get_values(resource=nc_reference)
            dt_arr = get_time(resource=nc_reference)
            arr = ma.masked_array(arr)
            dt_arr = ma.masked_array(dt_arr)
            percentile = percentile
            window_width = 5

            for indice in indices:
                name = indice.replace('_', str(percentile))
                var = indice.split('_')[0]

                operation = None
                if 'T' in var:
                    if percentile >= 50:
                        operation = 'Icclim%s90p' % var
                        func = 'icclim_%s90p' % var  # icclim_TG90p
                    else:
                        operation = 'Icclim%s10p' % var
                        func = 'icclim_%s10p' % var

                ################################
                # load the appropriate operation
                ################################

                ops = [op for op in dir(lic) if operation in op]
                if len(ops) == 0:
                    raise Exception("operator does not exist %s", operation)

                exec "percentile_dict = lic.%s.get_percentile_dict(arr, dt_arr, percentile, window_width)" % ops[
                    0]
                calc = [{
                    'func': func,
                    'name': name,
                    'kwds': {
                        'percentile_dict': percentile_dict
                    }
                }]

                if polygons == None:
                    nc_indices.append(
                        call(resource=resource,
                             prefix=key.replace(variable, name).replace(
                                 '_day_', '_%s_' % grouping),
                             calc=calc,
                             calc_grouping=calc_group,
                             output_format='nc',
                             dir_output=dir_output))
                else:
                    nc_indices.extend(
                        clipping(
                            resource=resource,
                            prefix=key.replace(variable, name).replace(
                                '_day_', '_%s_' % grouping),
                            calc=calc,
                            calc_grouping=calc_group,
                            output_format='nc',
                            dir_output=dir_output,
                            polygons=polygons,
                            mosaic=mosaic,
                        ))
    return nc_indices


#def calc_indice_unconventional(resource=[], variable=None, prefix=None,
#indices=None, polygons=None,  groupings=None,
#dir_output=None, dimension_map = None):
#"""
#Calculates given indices for suitable files in the appropriate time grouping and polygon.

#:param resource: list of filenames in data reference syntax (DRS) convention (netcdf)
#:param variable: variable name to be selected in the in netcdf file (default=None)
#:param indices: list of indices (default ='TGx')
#:param polygons: list of polygons (default =None)
#:param grouping: indices time aggregation (default='yr')
#:param out_dir: output directory for result file (netcdf)
#:param dimension_map: optional dimension map if different to standard (default=None)

#:return: list of netcdf files with calculated indices. Files are saved into dir_output
#"""

#from os.path import join, dirname, exists
#from os import remove
#import uuid
#from flyingpigeon import ocgis_module
#from flyingpigeon.subset import get_ugid, get_geom

#if type(resource) != list:
#resource = list([resource])
#if type(indices) != list:
#indices = list([indices])
#if type(polygons) != list and polygons != None:
#polygons = list([polygons])
#elif polygons == None:
#polygons = [None]
#else:
#logger.error('Polygons not found')
#if type(groupings) != list:
#groupings = list([groupings])

#if dir_output != None:
#if not exists(dir_output):
#makedirs(dir_output)

#experiments = sort_by_filename(resource)
#outputs = []

#print('environment for calc_indice_unconventional set')
#logger.info('environment for calc_indice_unconventional set')

#for key in experiments:
#if variable == None:
#variable = get_variable(experiments[key][0])
#try:
#ncs = experiments[key]
#for indice in indices:
#logger.info('indice: %s' % indice)
#try:
#for grouping in groupings:
#logger.info('grouping: %s' % grouping)
#try:
#calc_group = calc_grouping(grouping)
#logger.info('calc_group: %s' % calc_group)
#for polygon in polygons:
#try:
#domain = key.split('_')[1].split('-')[0]
#if polygon == None:
#if prefix == None:
#prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping )
#geom = None
#ugid = None
#else:
#if prefix == None:
#prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping ).replace(domain,polygon)
#geom = get_geom(polygon=polygon)
#ugid = get_ugid(polygons=polygon, geom=geom)
#if indice == 'TGx':
#calc=[{'func': 'max', 'name': 'TGx'}]
#tmp = ocgis_module.call(resource=ncs,# conform_units_to='celcius',
#variable=variable, dimension_map=dimension_map,
#calc=calc, calc_grouping=calc_group, prefix=prefix,
#dir_output=dir_output, geom=geom, select_ugid=ugid)
#elif indice == 'TGn':
#calc=[{'func': 'min', 'name': 'TGn'}]
#tmp = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
#variable=variable, dimension_map=dimension_map,
#calc=calc, calc_grouping= calc_group, prefix=prefix,
#dir_output=dir_output, geom=geom, select_ugid = ugid)
#elif indice == 'TGx5day':
#calc = [{'func': 'moving_window', 'name': 'TGx5day', 'kwds': {'k': 5, 'operation': 'mean', 'mode': 'same' }}]
#tmp2 = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
#variable=variable, dimension_map=dimension_map,
#calc=calc, prefix=str(uuid.uuid4()),
#geom=geom, select_ugid = ugid)
#calc=[{'func': 'max', 'name': 'TGx5day'}]
#logger.info('moving window calculated : %s' % tmp2)
#tmp = ocgis_module.call(resource=tmp2,
#variable=indice, dimension_map=dimension_map,
#calc=calc, calc_grouping=calc_group, prefix=prefix,
#dir_output=dir_output)
#remove(tmp2)
#elif indice == 'TGn5day':
#calc = [{'func': 'moving_window', 'name': 'TGn5day', 'kwds': {'k': 5, 'operation': 'mean', 'mode': 'same' }}]
#tmp2 = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
#variable=variable, dimension_map=dimension_map,
#calc=calc, prefix=str(uuid.uuid4()),
#geom=geom, select_ugid = ugid)
#calc=[{'func': 'min', 'name': 'TGn5day'}]

#logger.info('moving window calculated : %s' % tmp2)

#tmp = ocgis_module.call(resource=tmp2,
#variable=indice, dimension_map=dimension_map,
#calc=calc, calc_grouping=calc_group, prefix=prefix,
#dir_output=dir_output)
#remove(tmp2)
#else:
#logger.error('Indice %s is not a known inidce' % (indice))
#outputs.append(tmp)
#logger.info('indice file calcualted %s ' % (tmp))
#except Exception as e:
#logger.debug('could not calc indice %s for key %s, polygon %s and calc_grouping %s : %s' %  (indice, key, polygon, grouping, e ))
#except Exception as e:
#logger.debug('could not calc indice %s for key %s and calc_grouping %s : %s' % ( indice, key, polygon, e ))
#except Exception as e:
#logger.debug('could not calc indice %s for key %s: %s'%  (indice, key, e ))
#except Exception as e:
#logger.debug('could not calc key %s: %s' % (key, e))
#return outputs
Exemplo n.º 19
0
def calc_indice_simple(resource=[], variable=None, prefix=None, indice='SU',
                       polygons=None, mosaic=False, grouping='yr', dir_output=None,
                       dimension_map=None, memory_limit=None):
    """
    Calculates given simple indices for suitable files in the appropriate time grouping and polygon.

    :param resource: list of filenames in data reference syntax (DRS) convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: Indice (default ='SU')
    :param polygons: list of polgons (default ='FRA')
    :param grouping: indices time aggregation (default='yr')
    :param out_dir: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into out_dir.
    """
    from os.path import join, dirname, exists
    from flyingpigeon import ocgis_module
    from flyingpigeon.subset import clipping
    import uuid

    if type(resource) != list:
        resource = list([resource])
    # if type(indices) != list:
    #     indices = list([indices])
    if type(polygons) != list and polygons is None:
        polygons = list([polygons])
    # if type(groupings) != list:
    #     groupings = list([groupings])

    if dir_output is not None:
        if not exists(dir_output):
            makedirs(dir_output)

    datasets = sort_by_filename(resource).keys()

    if len(datasets) is 1:
        key = datasets[0]
    else:
        LOGGER.warning('more than one dataset in resource')

    # from flyingpigeon.subset import select_ugid
    #    tile_dim = 25
    output = None

    # experiments = sort_by_filename(resource)
    outputs = []

    # for key in experiments:

    if variable is None:
        variable = get_variable(resource)
        LOGGER.debug('Variable detected % s ' % variable)

    # variable = key.split('_')[0]
    try:
        # icclim can't handling 'kg m2 sec' needs to be 'mm/day'
        if variable == 'pr':
            calc = 'pr=pr*86400'
            ncs = ocgis_module.call(resource=resource,
                                    variable=variable,
                                    dimension_map=dimension_map,
                                    calc=calc,
                                    memory_limit=memory_limit,
                                    # calc_grouping= calc_group,
                                    prefix=str(uuid.uuid4()),
                                    dir_output=dir_output,
                                    output_format='nc')
        else:
            ncs = resource

        try:
            calc = [{'func': 'icclim_' + indice, 'name': indice}]
            LOGGER.info('calc: %s' % calc)
            try:
                calc_group = calc_grouping(grouping)
                LOGGER.info('calc_group: %s' % calc_group)
                if polygons is None:
                    try:
                        prefix = key.replace(variable, indice).replace('_day_', '_%s_' % grouping)
                        LOGGER.debug(' **** dir_output = %s ' % dir_output)
                        tmp = ocgis_module.call(resource=ncs,
                                                variable=variable,
                                                dimension_map=dimension_map,
                                                calc=calc,
                                                calc_grouping=calc_group,
                                                prefix=prefix,
                                                dir_output=dir_output,
                                                output_format='nc')
                        if len(tmp) is not 0:
                            outputs.extend(tmp)
                        else:
                            msg = 'could not calc indice %s for domain ' % (indice)
                            LOGGER.exception(msg)
                    except:
                        msg = 'could not calc indice %s for domain in %s' % (indice)
                        LOGGER.exception(msg)
                else:
                    try:
                        prefix = key.replace(variable, indice).replace('_day_', '_%s_' % grouping)
                        tmp = clipping(resource=ncs,
                                       variable=variable,
                                       dimension_map=dimension_map,
                                       calc=calc,
                                       calc_grouping=calc_group,
                                       prefix=prefix,
                                       polygons=polygons,
                                       mosaic=mosaic,
                                       dir_output=dir_output,
                                       output_format='nc')
                        if len(tmp) is not 0:
                            outputs.extend(tmp)
                        else:
                            msg = 'could not calc clipped indice %s ' % (indice)
                            LOGGER.exception(msg)
                    except:
                        msg = 'could not calc indice %s for domai' % (indice)
                        LOGGER.debug(msg)
                        # raise Exception(msg)
                    LOGGER.info('indice file calculated: %s' % tmp)
            except:
                msg = 'could not calc indice %s for key %s and grouping %s' % (indice, grouping)
                LOGGER.exception(msg)
                # raise Exception(msg)
        except:
            msg = 'could not calc indice %s ' % (indice)
            LOGGER.exception(msg)
            # raise Exception(msg)
    except:
        msg = 'could not calculate indices'
        LOGGER.exception(msg)
        # raise Exception(msg)
    LOGGER.info('indice outputs %s ' % outputs)

    if len(outputs) is 0:
        LOGGER.debug('No indices are calculated')
        return None
    return outputs
Exemplo n.º 20
0
def get_indices(resource, indices):
    """
    calculating indices (netCDF files) defined in _SDMINDICES_

    :param resources: files containing one Dataset
    :param indices: List of indices defined in _SDMINDICES_. Index needs to be based on the resource variable

    :return list: list of filepathes to netCDF files
    """

    from flyingpigeon.utils import sort_by_filename, calc_grouping, drs_filename, unrotate_pole, get_variable
    # from flyingpigeon.ocgis_module import call
    from flyingpigeon.indices import indice_variable, calc_indice_simple
    from flyingpigeon.subset import masking
    from flyingpigeon.utils import searchfile
    from flyingpigeon.utils import search_landsea_mask_by_esgf
    from os.path import basename

    # names = [drs_filename(nc, skip_timestamp=False, skip_format=False,
    #               variable=None, rename_file=True, add_file_path=True) for nc in resources]
    variable = get_variable(resource)

    masked_datasets = []
    max_count = len(resource)

    for ds in resource:
        ds_name = basename(ds)
        LOGGER.debug('masking dataset: %s', ds_name)
        try:
            landsea_mask = search_landsea_mask_by_esgf(ds)
            LOGGER.debug("using landsea_mask: %s", landsea_mask)
            prefix = ds_name.replace('.nc', '')
            new_ds = masking(ds, landsea_mask, land_area=True, prefix=prefix)
            masked_datasets.append(new_ds)
        except:
            LOGGER.exception("Could not subset dataset.")
            break
        else:
            LOGGER.info("masked: %d/%d", len(masked_datasets), max_count)
    if not masked_datasets:
        raise Exception("Could not mask input files.")

    ncs = sort_by_filename(masked_datasets, historical_concatination=True)
    key = ncs.keys()[0]
    ncs_indices = []
    LOGGER.info('resources sorted found %s datasets', len(ncs.keys()))
    for indice in indices:
        try:
            name, month = indice.split('_')
            # print name, month , variable
            if variable == indice_variable(name):
                LOGGER.info('calculating indice %s ' % indice)
                prefix = key.replace(variable, name).replace('_day_', '_%s_' % month)
                nc = calc_indice_simple(resource=resource,
                                        variable=variable,
                                        # polygons=['Europe', 'Africa', 'Asia', 'North America', 'Oceania',
                                        #           'South America', 'Antarctica'],
                                        # mosaic=True,
                                        prefix=prefix, indice=name, grouping=month)
                if nc is not None:
                    # coords = unrotate_pole(nc[0], write_to_file=True)
                    ncs_indices.append(nc[0])
                    LOGGER.info('Successful calculated indice %s %s' % (key, indice))
                else:
                    msg = 'failed to calculate indice %s %s' % (key, indice)
                    LOGGER.exception(msg)
        except:
            msg = 'failed to calculate indice %s %s' % (key, indice)
            LOGGER.exception(msg)
    return ncs_indices
Exemplo n.º 21
0
def uncertainty(resouces, variable=None, ylim=None, title=None, file_extension='png', window=None):
    """
    creates a png file containing the appropriate uncertainty plot.

    :param resouces: list of files containing the same variable
    :param variable: variable to be visualised. If None (default), variable will be detected
    :param title: string to be used as title
    :param window: windowsize of the rolling mean

    :returns str: path/to/file.png
    """
    LOGGER.debug('Start visualisation uncertainty plot')

    import pandas as pd
    import numpy as np
    from os.path import basename
    from flyingpigeon.utils import get_time, sort_by_filename
    from flyingpigeon.calculation import fieldmean
    from flyingpigeon.metadata import get_frequency

    # === prepare invironment
    if type(resouces) == str:
        resouces = list([resouces])
    if variable is None:
        variable = utils.get_variable(resouces[0])
    if title is None:
        title = "Field mean of %s " % variable

    try:
        fig = plt.figure(figsize=(20, 10), facecolor='w', edgecolor='k')  # dpi=600,
        #  variable = utils.get_variable(resouces[0])
        df = pd.DataFrame()

        LOGGER.info('variable %s found in resources.' % variable)
        datasets = sort_by_filename(resouces, historical_concatination=True)

        for key in datasets.keys():
            try:
                data = fieldmean(datasets[key])  # get_values(f)
                ts = get_time(datasets[key])
                ds = pd.Series(data=data, index=ts, name=key)
                # ds_yr = ds.resample('12M', ).mean()   # yearly mean loffset='6M'
                df[key] = ds

            except Exception:
                LOGGER.exception('failed to calculate timeseries for %s ' % (key))

        frq = get_frequency(resouces[0])
        print frq

        if window is None:
            if frq == 'day':
                window = 10951
            elif frq == 'man':
                window = 359
            elif frq == 'sem':
                window = 119
            elif frq == 'yr':
                window = 30
            else:
                LOGGER.debug('frequency %s is not included' % frq)
                window = 30

        if len(df.index.values) >= window * 2:
            # TODO: calculate windowsize according to timestapms (day,mon,yr ... with get_frequency)
            df_smooth = df.rolling(window=window, center=True).mean()
            LOGGER.info('rolling mean calculated for all input data')
        else:
            df_smooth = df
            LOGGER.debug('timeseries too short for moving mean')
            fig.text(0.95, 0.05, '!!! timeseries too short for moving mean over 30years !!!',
                     fontsize=20, color='red',
                     ha='right', va='bottom', alpha=0.5)

        try:
            rmean = df_smooth.quantile([0.5], axis=1,)  # df_smooth.median(axis=1)
            # skipna=False  quantile([0.5], axis=1, numeric_only=False )
            q05 = df_smooth.quantile([0.10], axis=1,)  # numeric_only=False)
            q33 = df_smooth.quantile([0.33], axis=1,)  # numeric_only=False)
            q66 = df_smooth.quantile([0.66], axis=1, )  # numeric_only=False)
            q95 = df_smooth.quantile([0.90], axis=1, )  # numeric_only=False)
            LOGGER.info('quantile calculated for all input data')
        except Exception:
            LOGGER.exception('failed to calculate quantiles')

        try:
            plt.fill_between(df_smooth.index.values, np.squeeze(q05.values), np.squeeze(q95.values),
                             alpha=0.5, color='grey')
            plt.fill_between(df_smooth.index.values, np.squeeze(q33.values), np.squeeze(q66.values),
                             alpha=0.5, color='grey')

            plt.plot(df_smooth.index.values, np.squeeze(rmean.values), c='r', lw=3)

            plt.xlim(min(df.index.values), max(df.index.values))
            plt.ylim(ylim)
            plt.title(title, fontsize=20)
            plt.grid()  # .grid_line_alpha=0.3

            output_png = fig2plot(fig=fig, file_extension=file_extension)
            plt.close()
            LOGGER.debug('timeseries uncertainty plot done for %s' % variable)
        except Exception as err:
            raise Exception('failed to calculate quantiles. %s' % err.message)
    except Exception:
        LOGGER.exception('uncertainty plot failed for %s.' % variable)
        _, output_png = mkstemp(dir='.', suffix='.png')
    return output_png
Exemplo n.º 22
0
from os import listdir
from os.path import join
from flyingpigeon import utils
from flyingpigeon import metadata as md
from pandas import DataFrame
from flyingpigeon import calculation as cal

p = '/home/nils/data/AFR-44/tas/'
ncs = [
    join(p, nc) for nc in listdir(p)
    if not 'tas_AFR-44_MOHC-HadGEM2-ES_historical_r1i1p1_KNMI-RACMO22T_v2_day'
    in nc
]
ncs_dic = utils.sort_by_filename(ncs)

ts = utils.get_time(ncs_dic[ncs_dic.keys()[0]])
data = cal.fieldmean(ncs_dic[ncs_dic.keys()[0]])
    def execute(self):
        logger.info('Start process')
      
        try: 
            logger.info('read in the arguments')
            resources = self.getInputValues(identifier='resources')
            method = self.getInputValues(identifier='method')
            time_region = self.getInputValues(identifier='time_region')[0]
            bbox = self.getInputValues(identifier='BBox')[0]
            
            logger.info('bbox %s' % str(bbox))
            logger.info('time_region %s' % str(time_region))
            logger.info('method: %s' % str(method))
            

        except Exception as e: 
            logger.error('failed to read in the arguments %s ' % e)
        
        #bbox = '-80,22.5,50,70'
        logger.info('bbox is set to %s' % bbox)     

        #####################    
        ### get the required bbox from resource
        #####################
        # from flyingpigeon.ocgis_module import call 
        
        from flyingpigeon.utils import sort_by_filename, get_time # , calc_grouping
        from flyingpigeon import weatherclass as wc
        from flyingpigeon.visualisation import plot_tSNE, plot_kMEAN, concat_images, plot_pressuremap
        
        from datetime import datetime as dt
        from numpy import savetxt, column_stack
        
        import tarfile
        
        from cdo import *
        cdo = Cdo()        
        
        # grouping = calc_grouping(time_region)
        ncs = sort_by_filename(resources, historical_concatination=True)

        png_clusters = []
        txt_info = []
        png_pressuremaps = []
        
        try:
          # open tar files
          tar_info = tarfile.open('info.tar', "w")
          logger.info('tar files prepared')
        except:
          msg = 'tar file preparation failed'
          logger.exception(msg)
          raise Exception(msg)

        
        for key in ncs.keys():
          if len(ncs[key])>1:
            input = cdo.timmerge(input=ncs[key], output='merge.nc' )
          elif len(ncs[key])==1:
            input = ncs[key]
          else:
            logger.debug('invalid number of input files for dataset %s' % key)            
 
          #for tr in time_region:
          if not time_region == 'None':
            nc_grouped = cdo.selmon(time_region, input=input, output='grouped.nc')
          else:
            nc_grouped = input 
          
      #     for bb in bbox:    
          nc  = cdo.sellonlatbox('%s' % bbox, input=nc_grouped, output='subset.nc')
          logger.info('nc subset: %s ' % nc)
          
          try:
            vals, pca = wc.get_pca(nc)
            logger.info('PCa calculated')
          except:
            logger.debug('failed to calculate PCs')
            raise
          
          for md in method:
            try:
              if md == 'tSNE':
                data = wc.calc_tSNE(pca)
                png_clusters.append(plot_tSNE(data,title='tSNE month: %s [lonlat: %s]' % (time_region,bbox), sub_title='file: %s' % key))
                logger.info('tSNE calculated for %s ' % key)
              if md == 'kMEAN':
                kmeans = wc.calc_kMEAN(pca)
                c = kmeans.predict(pca)
                times = get_time(nc)
                timestr = [dt.strftime(t, format='%Y-%d-%m_%H:%M:%S') for t in times]
                tc = column_stack([timestr, c])
                fn = '%s.txt' % key
                
                savetxt(fn, tc, fmt='%s', header='Date_Time WeatherRegime')

                tar_info.add(fn) #, arcname = basename(nc) 
                
                png_clusters.append(plot_kMEAN(kmeans, pca, title='kMEAN month: %s [lonlat: %s]' % (time_region,bbox), sub_title='file: %s' % key))
                logger.info('kMEAN calculated for %s ' % key)
                
                subplots = []
                for i in range(4): 
                    subplots.append(plot_pressuremap((vals[c==i]/100), title='Weather Regime %s: Month %s ' % (i, time_region), sub_title='file: %s' % key))

                
                from PIL import Image
                import sys
                from tempfile import mkstemp

                open_subplots = map(Image.open, subplots)
                w = max(i.size[0] for i in open_subplots)
                h = max(i.size[1] for i in open_subplots)
                
                result = Image.new("RGB", (w*2, h*2))
                # p = h / len(open_subplots)
                c = 0 
                for i ,iw in enumerate([0,w]):
                    for j, jh in enumerate([0,h]):
                        oi = open_subplots[c] 
                        c = c +1
                    
                        cw = oi.size[0]
                        ch = oi.size[1]

                        box = [iw,jh,iw+cw,jh+ch]
                        result.paste(oi, box=box)

                ip, pressuremap = mkstemp(dir='.',suffix='.png')
                result.save(pressuremap)
                png_pressuremaps.append(pressuremap)
                
            except:
              logger.debug('faild to calculate cluster for %s' % key )
              raise

        c_clusters = concat_images(png_clusters)
        c_maps = concat_images(png_pressuremaps)
        
              
        try:
          tar_info.close()  
          logger.info('tar files closed')
        except Exception as e:
          logger.exception('tar file closing failed')
    

        # call 
        # self.output_nc.setValue( nc )
        self.output_clusters.setValue( c_clusters  )
        self.output_maps.setValue( c_maps  )
        self.output_info.setValue('info.tar')
Exemplo n.º 24
0
def calc_indice_percentile(resources=[], variable=None, 
    prefix=None, indices='TG90p', refperiod=None,
    groupings='yr', polygons=None, percentile=90, mosaic = False, 
    dir_output=None, dimension_map = None):
    """
    Calculates given indices for suitable files in the appropriate time grouping and polygon.

    :param resource: list of filenames in data reference syntax (DRS) convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: list of indices (default ='TG90p')
    :param prefix: filename prefix 
    :param refperiod: reference period tuple = (start,end)
    :param grouping: indices time aggregation (default='yr')
    :param dir_output: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into out_dir.
    """
    from os.path import join, dirname, exists
    from os import remove
    import uuid
    from numpy import ma 
    from datetime import datetime as dt

    from flyingpigeon.ocgis_module import call
    from flyingpigeon.subset import clipping
    from flyingpigeon.utils import get_values, get_time
    
    if type(resources) != list: 
      resources = list([resources])
    if type(indices) != list: 
      indices = list([indices])
      
    if type(groupings) != list: 
      groupings = list([groupings])
      
    if type(refperiod) == list: 
      refperiod = refperiod[0]
      
    if refperiod != None:
      start = dt.strptime(refperiod.split('-')[0] , '%Y%m%d')
      end = dt.strptime(refperiod.split('-')[1] , '%Y%m%d')
      time_range = [start, end]
    else:  
      time_range = None
    
    if dir_output != None:
      if not exists(dir_output): 
        makedirs(dir_output)
    
    ########################################################################################################################
    # Compute a custom percentile basis using ICCLIM. ######################################################################
    ########################################################################################################################

    from ocgis.contrib import library_icclim  as lic 
    nc_indices = []
    nc_dic = sort_by_filename(resources)
    
    for grouping in groupings:
      calc_group = calc_grouping(grouping)
      for key in nc_dic.keys():
        resource = nc_dic[key]
        if variable == None: 
          variable = get_variable(resource)
        if polygons == None:
          nc_reference = call(resource=resource, 
            prefix=str(uuid.uuid4()), 
            time_range=time_range,
            output_format='nc', 
            dir_output=dir_output)
        else:
          nc_reference = clipping(resource=resource, 
            prefix=str(uuid.uuid4()),
            time_range=time_range, 
            output_format='nc', 
            polygons=polygons,
            dir_output=dir_output, 
            mosaic = mosaic)
          
        arr = get_values(resource=nc_reference)
        dt_arr = get_time(resource=nc_reference)
        arr = ma.masked_array(arr)
        dt_arr = ma.masked_array(dt_arr)
        percentile = percentile
        window_width = 5
        
        for indice in indices:
          name = indice.replace('_', str(percentile))
          var = indice.split('_')[0]

          operation = None
          if 'T' in var: 
            if percentile >= 50: 
              operation = 'Icclim%s90p' % var
              func = 'icclim_%s90p' % var # icclim_TG90p
            else: 
              operation = 'Icclim%s10p' % var
              func = 'icclim_%s10p' % var
              
          ################################
          # load the appropriate operation
          ################################

          ops = [op for op in dir(lic) if operation in op]
          if len(ops) == 0:
              raise Exception("operator does not exist %s", operation)
          
          exec "percentile_dict = lic.%s.get_percentile_dict(arr, dt_arr, percentile, window_width)" % ops[0]
          calc = [{'func': func, 'name': name, 'kwds': {'percentile_dict': percentile_dict}}]
          
          if polygons == None:
            nc_indices.append(call(resource=resource, 
                                prefix=key.replace(variable,name).replace('_day_', '_%s_' % grouping), 
                                calc=calc, 
                                calc_grouping=calc_group, 
                                output_format='nc',
                                dir_output=dir_output))
          else: 
            nc_indices.extend(clipping(resource=resource, 
                                prefix=key.replace(variable,name).replace('_day_', '_%s_' % grouping), 
                                calc=calc, 
                                calc_grouping=calc_group, 
                                output_format='nc',
                                dir_output=dir_output,
                                polygons=polygons, 
                                mosaic = mosaic,
                                ))
    return nc_indices

#def calc_indice_unconventional(resource=[], variable=None, prefix=None,
  #indices=None, polygons=None,  groupings=None, 
  #dir_output=None, dimension_map = None):
    #"""
    #Calculates given indices for suitable files in the appropriate time grouping and polygon.

    #:param resource: list of filenames in data reference syntax (DRS) convention (netcdf)
    #:param variable: variable name to be selected in the in netcdf file (default=None)
    #:param indices: list of indices (default ='TGx')
    #:param polygons: list of polygons (default =None)
    #:param grouping: indices time aggregation (default='yr')
    #:param out_dir: output directory for result file (netcdf)
    #:param dimension_map: optional dimension map if different to standard (default=None)

    #:return: list of netcdf files with calculated indices. Files are saved into dir_output
    #"""
    
    #from os.path import join, dirname, exists
    #from os import remove
    #import uuid
    #from flyingpigeon import ocgis_module
    #from flyingpigeon.subset import get_ugid, get_geom

    #if type(resource) != list: 
      #resource = list([resource])
    #if type(indices) != list: 
      #indices = list([indices])
    #if type(polygons) != list and polygons != None:
      #polygons = list([polygons])
    #elif polygons == None:
      #polygons = [None]
    #else: 
      #logger.error('Polygons not found')
    #if type(groupings) != list:
      #groupings = list([groupings])
    
    #if dir_output != None:
      #if not exists(dir_output): 
        #makedirs(dir_output)
    
    #experiments = sort_by_filename(resource)
    #outputs = []

    #print('environment for calc_indice_unconventional set')
    #logger.info('environment for calc_indice_unconventional set')
    
    #for key in experiments:
      #if variable == None:
        #variable = get_variable(experiments[key][0])
      #try: 
        #ncs = experiments[key]
        #for indice in indices:
          #logger.info('indice: %s' % indice)
          #try: 
            #for grouping in groupings:
              #logger.info('grouping: %s' % grouping)
              #try:
                #calc_group = calc_grouping(grouping)
                #logger.info('calc_group: %s' % calc_group)
                #for polygon in polygons:  
                  #try:
                    #domain = key.split('_')[1].split('-')[0]
                    #if polygon == None:
                      #if prefix == None: 
                        #prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping )
                      #geom = None
                      #ugid = None
                    #else:
                      #if prefix == None: 
                        #prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping ).replace(domain,polygon)
                      #geom = get_geom(polygon=polygon)
                      #ugid = get_ugid(polygons=polygon, geom=geom)
                    #if indice == 'TGx':
                      #calc=[{'func': 'max', 'name': 'TGx'}]
                      #tmp = ocgis_module.call(resource=ncs,# conform_units_to='celcius',
                                              #variable=variable, dimension_map=dimension_map, 
                                              #calc=calc, calc_grouping=calc_group, prefix=prefix,
                                              #dir_output=dir_output, geom=geom, select_ugid=ugid)
                    #elif indice == 'TGn':
                      #calc=[{'func': 'min', 'name': 'TGn'}]
                      #tmp = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
                                              #variable=variable, dimension_map=dimension_map, 
                                              #calc=calc, calc_grouping= calc_group, prefix=prefix,
                                               #dir_output=dir_output, geom=geom, select_ugid = ugid)
                    #elif indice == 'TGx5day':
                      #calc = [{'func': 'moving_window', 'name': 'TGx5day', 'kwds': {'k': 5, 'operation': 'mean', 'mode': 'same' }}]
                      #tmp2 = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
                                              #variable=variable, dimension_map=dimension_map, 
                                              #calc=calc, prefix=str(uuid.uuid4()),
                                              #geom=geom, select_ugid = ugid)
                      #calc=[{'func': 'max', 'name': 'TGx5day'}]
                      #logger.info('moving window calculated : %s' % tmp2)
                      #tmp = ocgis_module.call(resource=tmp2,
                                              #variable=indice, dimension_map=dimension_map, 
                                              #calc=calc, calc_grouping=calc_group, prefix=prefix,
                                              #dir_output=dir_output)
                      #remove(tmp2)
                    #elif indice == 'TGn5day':
                      #calc = [{'func': 'moving_window', 'name': 'TGn5day', 'kwds': {'k': 5, 'operation': 'mean', 'mode': 'same' }}]
                      #tmp2 = ocgis_module.call(resource=ncs, #conform_units_to='celcius',
                                              #variable=variable, dimension_map=dimension_map, 
                                              #calc=calc, prefix=str(uuid.uuid4()),
                                              #geom=geom, select_ugid = ugid)
                      #calc=[{'func': 'min', 'name': 'TGn5day'}]
                      
                      #logger.info('moving window calculated : %s' % tmp2)
                      
                      #tmp = ocgis_module.call(resource=tmp2,
                                              #variable=indice, dimension_map=dimension_map, 
                                              #calc=calc, calc_grouping=calc_group, prefix=prefix,
                                              #dir_output=dir_output)
                      #remove(tmp2)
                    #else: 
                      #logger.error('Indice %s is not a known inidce' % (indice))
                    #outputs.append(tmp)
                    #logger.info('indice file calcualted %s ' % (tmp))
                  #except Exception as e:
                    #logger.debug('could not calc indice %s for key %s, polygon %s and calc_grouping %s : %s' %  (indice, key, polygon, grouping, e ))
              #except Exception as e:
                #logger.debug('could not calc indice %s for key %s and calc_grouping %s : %s' % ( indice, key, polygon, e ))
          #except Exception as e:
            #logger.debug('could not calc indice %s for key %s: %s'%  (indice, key, e ))
      #except Exception as e:
        #logger.debug('could not calc key %s: %s' % (key, e))
    #return outputs
Exemplo n.º 25
0
def method_A(resource=[],
             start=None,
             end=None,
             timeslice=20,
             variable=None,
             title=None,
             cmap='seismic'):
    """returns the result

    :param resource: list of paths to netCDF files
    :param start: beginning of reference period (if None (default),
                  the first year of the consistent ensemble will be detected)
    :param end: end of comparison period (if None (default), the last year of the consistent ensemble will be detected)
    :param timeslice: period length for mean calculation of reference and comparison period
    :param variable: OBSOLETE
    :param title: str to be used as title for the signal mal
    :param cmap: define the color scheme for signal map plotting

    :return: signal.nc, low_agreement_mask.nc, high_agreement_mask.nc, text.txt,  #  graphic.png,
    """
    from os.path import split
    from tempfile import mkstemp
    from cdo import Cdo
    cdo = Cdo()
    cdo.forceOutput = True

    # preparing the resource
    try:
        file_dic = sort_by_filename(resource, historical_concatination=True)
        LOGGER.info('file names sorted experimets: %s' % len(file_dic.keys()))
    except:
        msg = 'failed to sort the input files'
        LOGGER.exception(msg)

    # check that all datasets contains the same variable

    try:
        var_name = set()
        for key in file_dic.keys():
            var_name = var_name.union([get_variable(file_dic[key])])
        LOGGER.debug(var_name)
    except:
        LOGGER.exception('failed to get the variable in common')

    if len(var_name) == 1:
        variable = [str(n) for n in var_name][0]
        LOGGER.info('varible %s detected in all members of the ensemble' %
                    variable)
    else:
        raise Exception(
            'none or more than one variables are found in the ensemble members'
        )

    # TODO: drop missfitting grids

    # timemerge for seperate datasets
    try:
        mergefiles = []
        for key in file_dic.keys():
            # if variable is None:
            #     variable = get_variable(file_dic[key])
            #     LOGGER.info('variable detected %s ' % variable)
            try:
                if type(file_dic[key]) == list and len(file_dic[key]) > 1:
                    _, nc_merge = mkstemp(dir='.', suffix='.nc')
                    mergefiles.append(
                        cdo.mergetime(input=file_dic[key], output=nc_merge))
                else:
                    mergefiles.extend(file_dic[key])
            except:
                LOGGER.exception('failed to merge files for %s ' % key)
        LOGGER.info('datasets merged %s ' % mergefiles)
    except:
        msg = 'seltime and mergetime failed'
        LOGGER.exception(msg)

    # dataset documentation
    try:
        text_src = open('infiles.txt', 'a')
        for key in file_dic.keys():
            text_src.write(key + '\n')
        text_src.close()
    except:
        msg = 'failed to write source textfile'
        LOGGER.exception(msg)
        _, text_src = mkstemp(dir='.', suffix='.txt')

    # configure reference and compare period
    # TODO: filter files by time

    try:
        if start is None:
            st_set = set()
            en_set = set()
            for f in mergefiles:
                times = get_time(f)
                st_set.update([times[0].year])
        if end is None:
            en_set.update([times[-1].year])
            start = max(st_set)
        if end is None:
            end = min(en_set)
        LOGGER.info('Start and End: %s - %s ' % (start, end))
        if start >= end:
            LOGGER.error(
                'ensemble is inconsistent!!! start year is later than end year'
            )
    except:
        msg = 'failed to detect start and end times of the ensemble'
        LOGGER.exception(msg)

    # set the periodes:
    try:
        LOGGER.debug(type(start))
        # start = int(start)
        # end = int(end)
        if timeslice is None:
            timeslice = int((end - start) / 3)
            if timeslice == 0:
                timeslice = 1
        else:
            timeslice = int(timeslice)
        start1 = start
        start2 = start1 + timeslice - 1
        end1 = end - timeslice + 1
        end2 = end
        LOGGER.info('timeslice and periodes set')
    except:
        msg = 'failed to set the periodes'
        LOGGER.exception(msg)

    try:
        files = []
        for i, mf in enumerate(mergefiles):
            files.append(
                cdo.selyear('{0}/{1}'.format(start1, end2),
                            input=[mf.replace(' ', '\ ')],
                            output='file_{0}_.nc'.format(i)))  # python version
        LOGGER.info('timeseries selected from defined start to end year')
    except:
        msg = 'seltime and mergetime failed'
        LOGGER.exception(msg)

    try:
        # ensemble mean
        nc_ensmean = cdo.ensmean(input=files, output='nc_ensmean.nc')
        LOGGER.info('ensemble mean calculation done')
    except:
        msg = 'ensemble mean failed'
        LOGGER.exception(msg)

    try:
        # ensemble std
        nc_ensstd = cdo.ensstd(input=files, output='nc_ensstd.nc')
        LOGGER.info('ensemble std and calculation done')
    except:
        msg = 'ensemble std or failed'
        LOGGER.exception(msg)

    # get the get the signal as difference from the beginning (first years) and end period (last years), :
    try:
        selyearstart = cdo.selyear('%s/%s' % (start1, start2),
                                   input=nc_ensmean,
                                   output='selyearstart.nc')
        selyearend = cdo.selyear('%s/%s' % (end1, end2),
                                 input=nc_ensmean,
                                 output='selyearend.nc')
        meanyearst = cdo.timmean(input=selyearstart, output='meanyearst.nc')
        meanyearend = cdo.timmean(input=selyearend, output='meanyearend.nc')
        signal = cdo.sub(input=[meanyearend, meanyearst], output='signal.nc')
        LOGGER.info('Signal calculation done')
    except:
        msg = 'calculation of signal failed'
        LOGGER.exception(msg)
        _, signal = mkstemp(dir='.', suffix='.nc')

    # get the intermodel standard deviation (mean over whole period)
    try:
        # std_selyear = cdo.selyear('%s/%s' % (end1,end2), input=nc_ensstd, output='std_selyear.nc')
        # std = cdo.timmean(input = std_selyear, output = 'std.nc')

        std = cdo.timmean(input=nc_ensstd, output='std.nc')
        std2 = cdo.mulc('2', input=std, output='std2.nc')
        LOGGER.info('calculation of internal model std for time period done')
    except:
        msg = 'calculation of internal model std failed'
        LOGGER.exception(msg)
    try:
        absolut = cdo.abs(input=signal, output='absolut_signal.nc')
        high_agreement_mask = cdo.gt(
            input=[absolut, std2],
            output='large_change_with_high_model_agreement.nc')
        low_agreement_mask = cdo.lt(
            input=[absolut, std],
            output='small_signal_or_low_agreement_of_models.nc')
        LOGGER.info('high and low mask done')
    except:
        msg = 'calculation of robustness mask failed'
        LOGGER.exception(msg)
        _, high_agreement_mask = mkstemp(dir='.', suffix='.nc')
        _, low_agreement_mask = mkstemp(dir='.', suffix='.nc')

    return signal, low_agreement_mask, high_agreement_mask, text_src
Exemplo n.º 26
0
def get_segetalflora(
    resource=[], dir_output=".", culture_type="fallow", climate_type=2, region=None, dimension_map=None
):
    """productive worker for segetalflora jobs
  :param resources: list of tas netCDF files. (Any time aggregation is possible)
  :param culture_type: Type of culture. Possible values are:
                       'fallow', 'intensive', 'extensive' (default:'fallow')
  :param climate_type: Type of climate: number 1 to 7 or 'all' (default: 2)
  :param region: Region for subset. If 'None' (default), the values will be calculated for Europe
  """
    from flyingpigeon.subset import clipping
    from flyingpigeon.utils import calc_grouping, sort_by_filename
    import os
    from os import remove
    from tempfile import mkstemp
    from ocgis import RequestDataset, OcgOperations

    from cdo import Cdo

    cdo = Cdo()

    if not os.path.exists(dir_output):
        os.makedirs(dir_output)

    os.chdir(dir_output)
    # outputs = []

    if region == None:
        region = "Europe"

    if not type(culture_type) == list:
        culture_type = list([culture_type])
    if not type(climate_type) == list:
        climate_type = list([climate_type])

    ncs = sort_by_filename(resource)
    print "%s experiments found" % (len(ncs))
    print "keys: %s " % (ncs.keys())

    # generate outfolder structure:

    dir_netCDF = "netCDF"
    dir_ascii = "ascii"
    dir_netCDF_tas = dir_netCDF + "/tas"
    dir_ascii_tas = dir_ascii + "/tas"

    if not os.path.exists(dir_netCDF):
        os.makedirs(dir_netCDF)
    if not os.path.exists(dir_ascii):
        os.makedirs(dir_ascii)
    if not os.path.exists(dir_netCDF_tas):
        os.makedirs(dir_netCDF_tas)
    if not os.path.exists(dir_ascii_tas):
        os.makedirs(dir_ascii_tas)

    tas_files = []

    for key in ncs.keys():
        try:
            print "process %s" % (key)
            calc = [{"func": "mean", "name": "tas"}]
            calc_group = calc_grouping("yr")
            prefix = key.replace(key.split("_")[7], "yr")
            if not os.path.exists(os.path.join(dir_netCDF_tas, prefix + ".nc")):
                nc_tas = clipping(
                    resource=ncs[key],
                    variable="tas",
                    calc=calc,
                    dimension_map=dimension_map,
                    calc_grouping=calc_group,
                    prefix=prefix,
                    polygons="Europe",
                    dir_output=dir_netCDF_tas,
                )[0]
                print "clipping done for %s" % (key)
                if os.path.exists(os.path.join(dir_netCDF_tas, prefix + ".nc")):
                    tas_files.append(prefix)
                else:
                    print "clipping failed for %s: No output file exists" % (key)
            else:
                print "netCDF file already exists %s" % (key)
                nc_tas = os.path.join(dir_netCDF_tas, prefix + ".nc")
        except Exception as e:
            print "clipping failed for %s: %s" % (key, e)
        try:
            asc_tas = os.path.join(dir_ascii_tas, prefix + ".asc")
            if not os.path.exists(asc_tas):
                f, tmp = mkstemp(dir=os.curdir, suffix=".asc")
                tmp = tmp.replace(os.path.abspath(os.curdir), ".")

                # cdo.outputtab('name,date,lon,lat,value', input = nc_tas , output = tmp)
                cmd = "cdo outputtab,name,date,lon,lat,value %s > %s" % (nc_tas, tmp)
                print cmd
                os.system(cmd)
                print ("tanslation to ascii done")
                remove_rows(tmp, asc_tas)
                remove(tmp)
                print ("rows with missing values removed")
            else:
                print ("tas ascii already exists")
            plot_ascii(asc_tas)
        except Exception as e:
            print "translation to ascii failed %s: %s" % (key, e)
            if os.path.exists(tmp):
                remove(tmp)

    tas_files = [os.path.join(dir_netCDF_tas, nc) for nc in os.listdir(dir_netCDF_tas)]
    outputs = []

    for name in tas_files:
        for cult in culture_type:
            for climat in climate_type:
                try:
                    calc = get_equation(culture_type=cult, climate_type=climat)
                    if type(calc) != None:
                        try:
                            var = "sf%s%s" % (cult, climat)
                            prefix = os.path.basename(name).replace("tas", var).strip(".nc")

                            infile = name  # os.path.join(dir_netCDF_tas,name+'.nc')
                            dir_sf = os.path.join(dir_netCDF, var)
                            if not os.path.exists(dir_sf):
                                os.makedirs(dir_sf)
                            if os.path.exists(os.path.join(dir_sf, prefix + ".nc")):
                                nc_sf = os.path.join(dir_sf, prefix + ".nc")
                                print "netCDF file already exists: %s %s " % (dir_sf, prefix)
                            else:
                                rd = RequestDataset(name, variable="tas", dimension_map=dimension_map)
                                op = OcgOperations(
                                    dataset=rd,
                                    calc=calc,
                                    prefix=prefix,
                                    output_format="nc",
                                    dir_output=dir_sf,
                                    add_auxiliary_files=False,
                                )
                                nc_sf = op.execute()
                                print "segetalflora done for %s" % (prefix)
                                outputs.append(prefix)

                            dir_ascii_sf = os.path.join(dir_ascii, var)
                            if not os.path.exists(dir_ascii_sf):
                                os.makedirs(dir_ascii_sf)
                            asc_sf = os.path.join(dir_ascii_sf, prefix + ".asc")
                            if not os.path.exists(asc_sf):
                                f, tmp = mkstemp(dir=os.curdir, suffix=".asc")
                                tmp = tmp.replace(os.path.abspath(os.curdir), ".")
                                # cdo.outputtab('name,date,lon,lat,value', input = nc_sf , output = tmp)
                                cmd = "cdo outputtab,name,date,lon,lat,value %s > %s" % (nc_sf, tmp)
                                os.system(cmd)
                                print ("translation to ascii done")
                                remove_rows(tmp, asc_sf)
                                remove(tmp)
                                print ("rows with missing values removed")
                            else:
                                print "ascii file already exists"
                            plot_ascii(asc_sf)
                        except Exception as e:
                            print "failed for ascii file: %s %s " % (name, e)
                            if os.path.exists(tmp):
                                remove(tmp)
                    else:
                        print "NO EQUATION found for %s %s " % (cult, climat)
                except Exception as e:
                    print "Segetal flora failed: %s" % (e)
    return outputs
Exemplo n.º 27
0
    def _handler(self, request, response):
        init_process_logger('log.txt')
        response.outputs['output_log'].file = 'log.txt'

        try:
            resources = archiveextract(
                resource=rename_complexinputs(request.inputs['resource']))

            indices = [inpt.data for inpt in request.inputs['indices']]
            grouping = [inpt.data for inpt in request.inputs['grouping']]

            if 'mosaic' in request.inputs:
                mosaic = request.inputs['mosaic'][0].data
            else:
                mosaic = False

            if 'region' in request.inputs:
                region = [inpt.data for inpt in request.inputs['region']]
            else:
                region = None

            LOGGER.debug('grouping: {}'.format(grouping))
            LOGGER.debug('mosaic: {}'.format(mosaic))
            LOGGER.debug('indices: {}'.format(indices))
            LOGGER.debug('region: {}'.format(region))
            LOGGER.debug('Nr of input files: {}'.format(len(resources)))
        except Exception as ex:
            LOGGER.exception('failed to read in the arguments: {}'.format(str(ex)))

        response.update_status(
            'starting: indices={}, grouping={}, num_files={}'.format(indices, grouping, len(resources)), 2)

        results = []

        from flyingpigeon.utils import sort_by_filename
        datasets = sort_by_filename(resources, historical_concatination=True)
        results = []
        try:
            group = grouping[0]  # for group in grouping:
            indice = indices[0]  # for indice in indices:
            for key in datasets.keys():
                try:
                    response.update_status('Dataset {}: {}'.format(len(results) + 1, key), 10)

                    LOGGER.debug('grouping: {}'.format(grouping))
                    LOGGER.debug('mosaic: {}'.format(mosaic))
                    LOGGER.debug('indice: {}'.format(indice))
                    LOGGER.debug('region: {}'.format(region))
                    LOGGER.debug('Nr of input files: {}'.format(len(datasets[key])))

                    result = calc_indice_simple(
                        resource=datasets[key],
                        mosaic=mosaic,
                        indice=indice,
                        polygons=region,
                        grouping=group,
                        # dir_output=path.curdir,
                    )
                    LOGGER.debug('result: {}'.format(result))
                    results.extend(result)

                except Exception as ex:
                    msg = 'failed for {}: {}'.format(key, str(ex))
                    LOGGER.exception(msg)
                    raise Exception(msg)

        except Exception as ex:
            msg = 'Failed to calculate indices: {}'.format(str(ex))
            LOGGER.exception(msg)
            raise Exception(msg)

        #         # if not results:
        #         #     raise Exception("failed to produce results")
        #         # response.update_status('num results %s' % len(results), 90)

        tarf = archive(results)

        response.outputs['output_archive'].file = tarf

        i = next((i for i, x in enumerate(results) if x), None)
        if i is None:
            i = 'dummy.nc'
        response.outputs['ncout'].file = results[i]

        #       response.update_status("done", 100)
        return response
Exemplo n.º 28
0
def calc_indice_simple(resource=[],
                       variable=None,
                       prefix=None,
                       indices=None,
                       polygons=None,
                       mosaic=False,
                       groupings='yr',
                       dir_output=None,
                       dimension_map=None,
                       memory_limit=None):
    """
    Calculates given simple indices for suitable files in the appropriate time grouping and polygon.

    :param resource: list of filenames in data reference syntax (DRS) convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: list of indices (default ='SU')
    :param polygons: list of polgons (default ='FRA')
    :param grouping: indices time aggregation (default='yr')
    :param out_dir: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into out_dir.
    """
    from os.path import join, dirname, exists
    from flyingpigeon import ocgis_module
    from flyingpigeon.subset import clipping
    import uuid

    #DIR_SHP = config.shapefiles_dir()
    #env.DIR_SHPCABINET = DIR_SHP
    #env.OVERWRITE = True

    if type(resource) != list:
        resource = list([resource])
    if type(indices) != list:
        indices = list([indices])
    if type(polygons) != list and polygons != None:
        polygons = list([polygons])
    if type(groupings) != list:
        groupings = list([groupings])

    if dir_output != None:
        if not exists(dir_output):
            makedirs(dir_output)

    #from flyingpigeon.subset import select_ugid
    #    tile_dim = 25
    output = None

    experiments = sort_by_filename(resource)
    outputs = []

    for key in experiments:
        if variable == None:
            variable = get_variable(experiments[key][0])
            #variable = key.split('_')[0]
        try:

            if variable == 'pr':
                calc = 'pr=pr*86400'
                ncs = ocgis_module.call(
                    resource=experiments[key],
                    variable=variable,
                    dimension_map=dimension_map,
                    calc=calc,
                    memory_limit=memory_limit,
                    #alc_grouping= calc_group,
                    prefix=str(uuid.uuid4()),
                    dir_output=dir_output,
                    output_format='nc')

            else:
                ncs = experiments[key]
            for indice in indices:
                logger.info('indice: %s' % indice)
                try:
                    calc = [{'func': 'icclim_' + indice, 'name': indice}]
                    logger.info('calc: %s' % calc)
                    for grouping in groupings:
                        logger.info('grouping: %s' % grouping)
                        try:
                            calc_group = calc_grouping(grouping)
                            logger.info('calc_group: %s' % calc_group)
                            if polygons == None:
                                try:
                                    prefix = key.replace(variable,
                                                         indice).replace(
                                                             '_day_',
                                                             '_%s_' % grouping)
                                    tmp = ocgis_module.call(
                                        resource=ncs,
                                        variable=variable,
                                        dimension_map=dimension_map,
                                        calc=calc,
                                        calc_grouping=calc_group,
                                        prefix=prefix,
                                        dir_output=dir_output,
                                        output_format='nc')
                                    outputs.append(tmp)
                                except Exception as e:
                                    msg = 'could not calc indice %s for domain in %s' % (
                                        indice, key)
                                    logger.debug(msg)
                                    # raise Exception(msg)
                            else:
                                try:
                                    prefix = key.replace(variable,
                                                         indice).replace(
                                                             '_day_',
                                                             '_%s_' % grouping)
                                    tmp = clipping(resource=ncs,
                                                   variable=variable,
                                                   dimension_map=dimension_map,
                                                   calc=calc,
                                                   calc_grouping=calc_group,
                                                   prefix=prefix,
                                                   polygons=polygons,
                                                   mosaic=mosaic,
                                                   dir_output=dir_output,
                                                   output_format='nc')
                                    outputs.append(tmp)
                                except Exception as e:
                                    msg = 'could not calc indice %s for domain in %s' % (
                                        indice, key)
                                    logger.debug(msg)
                                    # raise Exception(msg)
                            logger.info('indice file calculated: %s' % tmp)
                        except Exception as e:
                            msg = 'could not calc indice %s for key %s and grouping %s' % (
                                indice, key, grouping)
                            logger.debug(msg)
                            # raise Exception(msg)
                except Exception as e:
                    msg = 'could not calc indice %s for key %s' % (indice, key)
                    logger.debug(msg)
                    # raise Exception(msg)
        except Exception as e:
            msg = 'could not calc key %s' % key
            logger.debug(msg)
            # raise Exception(msg)
    logger.info('indice outputs %s ' % outputs)
    return outputs
Exemplo n.º 29
0
def method_A(resource=[], start=None, end=None, timeslice=20, 
  variable=None, title=None, cmap='seismic' ):
  """returns the result
  
  :param resource: list of paths to netCDF files
  :param start: beginning of reference period (if None (default), the first year of the consistent ensemble will be detected)
  :param end: end of comparison period (if None (default), the last year of the consistent ensemble will be detected)
  :param timeslice: period length for mean calculation of reference and comparison period
  :param variable: variable name to be detected in the netCDF file. If not set (not recommended), the variable name will be detected
  :param title: str to be used as title for the signal mal
  :param cmap: define the color scheme for signal map plotting 

  :return: signal.nc, low_agreement_mask.nc, high_agreement_mask.nc, graphic.png, text.txt
  """
  from os.path import split
  from cdo import Cdo
  cdo = Cdo()
  cdo.forceOutput = True 
  
  try: 
    # preparing the resource
#    from flyingpigeon.ocgis_module import call
    file_dic = sort_by_filename(resource, historical_concatination = True)
    #print file_dic
    logger.info('file names sorted experimets: %s' % len(file_dic.keys()))
  except Exception as e:
    msg = 'failed to sort the input files'
    logger.exception(msg)
    raise Exception(msg)
  

  try:
    mergefiles = []
    for key in file_dic.keys():
      
      if type(file_dic[key]) == list and len(file_dic[key]) > 1:
        input = []
        for i in file_dic[key]:
          print i 
          input.extend([i.replace(' ','\\\ ')])
        mergefiles.append(cdo.mergetime(input=input, output=key+'_mergetime.nc'))
      else:
        mergefiles.extend(file_dic[key])
#      files.append(cdo.selyear('%s/%s' % (start1,end2), input = tmpfile , output =  key+'.nc' )) #python version
    logger.info('datasets merged %s ' % mergefiles)
  except Exception as e:
    msg = 'seltime and mergetime failed %s' % e
    logger.exception(msg)
    raise Exception(e)    
  
  try: 
    text_src = open('infiles.txt', 'a')
    for key in file_dic.keys():
      text_src.write(key + '\n')
    text_src.close()
  except Exception as e:
    msg = 'failed to write source textfile'
    logger.exception(msg)
    raise Exception(msg)
    
  # configure reference and compare period
  try: 
    if start == None:
      st_set = set()
      en_set = set()
      for f in mergefiles:
        print f
        times = get_time(f)
        st_set.update([times[0].year])
        if end == None: 
          en_set.update([times[-1].year])
      start = max(st_set)
      if end == None:
        end = min(en_set)
    logger.info('Start and End: %s - %s ' % (start, end))
    if start >= end: 
      logger.error('ensemble is inconsistent!!! start year is later than end year')
  except Exception as e:
    msg = 'failed to detect start and end times of the ensemble'
    logger.exception(msg)
    raise Exception(msg)

  # set the periodes: 
  try: 
    start = int(start)
    end = int(end)
    if timeslice == None: 
      timeslice = int((end - start) / 3)
      if timeslice == 0: 
        timeslice = 1
    else: 
      timeslice = int(timeslice)
    start1 = start
    start2 = start1 + timeslice - 1 
    end1 = end - timeslice + 1
    end2 = end
    logger.info('timeslice and periodes set')
  except Exception as e:
    msg = 'failed to set the periodes'
    logger.exception(msg)
    raise Exception(msg)

  try:
    files = []
    for i, mf in enumerate(mergefiles):
      files.append(cdo.selyear('{0}/{1}'.format(start1,end2), input=[mf.replace(' ','\ ')] , output='file_{0}_.nc'.format(i) )) #python version
    logger.info('timeseries selected from defined start to end year')
  except Exception as e:
    msg = 'seltime and mergetime failed'
    logger.exception(msg)
    raise Exception(msg)    

  try: 
    # ensemble mean 
    nc_ensmean = cdo.ensmean(input=files , output='nc_ensmean.nc')
    logger.info('ensemble mean calculation done')
  except Exception as e:
    msg = 'ensemble mean failed'
    logger.exception(msg)
    raise Exception(msg)
  
  try: 
    # ensemble std 
    nc_ensstd  = cdo.ensstd(input=files , output='nc_ensstd.nc')
    logger.info('ensemble std and calculation done')
  except Exception as e:
    msg = 'ensemble std or failed'
    logger.exception(msg)
    raise Exception(msg)
  
  # get the get the signal as difference from the beginning (first years) and end period (last years), :
  try:
    selyearstart = cdo.selyear('%s/%s' % (start1,start2), input = nc_ensmean, output = 'selyearstart.nc' ) 
    selyearend = cdo.selyear('%s/%s' % (end1,end2), input = nc_ensmean, output = 'selyearend.nc' )
    meanyearst = cdo.timmean(input = selyearstart, output= 'meanyearst.nc')
    meanyearend = cdo.timmean(input = selyearend, output= 'meanyearend.nc')
    signal = cdo.sub(input=[meanyearend, meanyearst], output = 'signal.nc')
    logger.info('Signal calculation done')
  except Exception as e:
    msg = 'calculation of signal failed'
    logger.exception(msg)
    raise Exception(msg)
  
  # get the intermodel standard deviation (mean over whole period)
  try:
    #std_selyear = cdo.selyear('%s/%s' % (end1,end2), input=nc_ensstd, output='std_selyear.nc')
    #std = cdo.timmean(input = std_selyear, output = 'std.nc')
    
    std = cdo.timmean(input = nc_ensstd, output = 'std.nc')
    std2 = cdo.mulc('2', input = std, output = 'std2.nc')
    logger.info('calculation of internal model std for time period done')
  except Exception as e:
    msg = 'calculation of internal model std failed'
    logger.exception(msg) 
    raise Exception(msg)
  try:
    absolut = cdo.abs(input=signal, output='absolut_signal.nc')
    high_agreement_mask = cdo.gt(input=[absolut,std2],  output= 'large_change_with_high_model_agreement.nc')
    low_agreement_mask = cdo.lt(input=[absolut,std], output= 'small_signal_or_low_agreement_of_models.nc')
    logger.info('high and low mask done')
  except Exception as e:
    msg = 'calculation of robustness mask failed'
    logger.exception(msg)
    raise Exception(msg)
  
  try: 
    if variable == None: 
      variable = get_variable(signal)
    logger.info('variable to be plotted: %s' % variable)
    
    if title == None: 
      title='Change of %s (difference of mean %s-%s to %s-%s)' % (variable, end1, end2, start1, start2)  
    
    graphic = None
    graphic = map_ensembleRobustness(signal, high_agreement_mask, low_agreement_mask, 
              variable=variable, 
              cmap=cmap,
              title = title)
    
    logger.info('graphic generated')
  except Exception as e:
    msg('graphic generation failed: %s' % e)
    logger.debug(msg)
    raise Exception(msg)

  return signal, low_agreement_mask, high_agreement_mask, graphic, text_src # 
Exemplo n.º 30
0
def signal_noise_ratio(resource=[],
                       start=None,
                       end=None,
                       timeslice=20,
                       variable=None,
                       title=None,
                       cmap='seismic'):
    """returns the result

    :param resource: list of paths to netCDF files
    :param start: beginning of reference period (if None (default),
                  the first year of the consistent ensemble will be detected)
    :param end: end of comparison period (if None (default), the last year of the consistent ensemble will be detected)
    :param timeslice: period length for mean calculation of reference and comparison period
    :param variable: OBSOLETE
    :param title: str to be used as title for the signal mal
    :param cmap: define the color scheme for signal map plotting

    :return: signal.nc, low_agreement_mask.nc, high_agreement_mask.nc, text.txt,  #  graphic.png,
    """
    from os.path import split
    from tempfile import mkstemp
    from cdo import Cdo
    cdo = Cdo()
    cdo.forceOutput = True

    # preparing the resource
    try:
        file_dic = sort_by_filename(resource, historical_concatination=True)
        LOGGER.info('file names sorted experimets: %s' % len(file_dic.keys()))
    except:
        msg = 'failed to sort the input files'
        LOGGER.exception(msg)

    # check that all datasets contains the same variable

    try:
        var_name = set()
        for key in file_dic.keys():
            var_name = var_name.union([get_variable(file_dic[key])])
        LOGGER.debug(var_name)
    except:
        LOGGER.exception('failed to get the variable in common')

    if len(var_name) == 1:
        variable = [str(n) for n in var_name][0]
        LOGGER.info('varible %s detected in all members of the ensemble' %
                    variable)
    else:
        raise Exception(
            'none or more than one variables are found in the ensemble members'
        )

    # TODO: drop missfitting grids

    # timemerge for seperate datasets
    try:
        mergefiles = []
        for key in file_dic.keys():
            # if variable is None:
            #     variable = get_variable(file_dic[key])
            #     LOGGER.info('variable detected %s ' % variable)
            try:
                if type(file_dic[key]) == list and len(file_dic[key]) > 1:
                    _, nc_merge = mkstemp(dir='.', suffix='.nc')
                    mergefiles.append(
                        cdo.mergetime(input=file_dic[key], output=nc_merge))
                else:
                    mergefiles.extend(file_dic[key])
            except:
                LOGGER.exception('failed to merge files for %s ' % key)
        LOGGER.info('datasets merged %s ' % mergefiles)
    except:
        msg = 'seltime and mergetime failed'
        LOGGER.exception(msg)

    # verify the calendar
    # find the most common calendar
    cals = []
    n = 0
    for nc in mergefiles:
        cal, util = get_calendar(nc)
        cals.append(cal)
    for cal in cals:
        m = cals.count(cal)
        if m > n:
            calendar = cal

    for c, nc in enumerate(mergefiles):
        cal, unit = get_calendar(nc)
        print 'calendar detected: %s most common: %s' % (cal, calendar)
        if cal != calendar:
            print 'calendar changed for %s to %s' % (cal, calendar)
            _, nc_cal = mkstemp(dir='.', suffix='.nc')
            nc_out = cdo.setcalendar('{0}'.format(calendar),
                                     input=nc,
                                     output=nc_cal)
            mergefiles[c] = nc_cal
            LOGGER.debug('calendar changed for %s' % nc)
        else:
            LOGGER.debug('calendar was %s' % cal)

    # dataset documentation
    try:
        text_src = open('infiles.txt', 'a')
        for key in file_dic.keys():
            text_src.write(key + '\n')
        text_src.close()
    except:
        msg = 'failed to write source textfile'
        LOGGER.exception(msg)
        _, text_src = mkstemp(dir='.', suffix='.txt')

    # evaluation
    # configure reference and compare period
    st = set()
    en = set()

    for key in file_dic.keys():
        #  TODO: convert 360day calendar

        s, e = get_timerange(file_dic[key])
        st.update([s])
        en.update([e])

    if start is None:
        start = list(st)[-1]
    else:
        if start < list(st)[-1]:
            start = list(st)[-1]
            LOGGER.debug(
                'start was befor the first common timestep, set start to the first common timestep'
            )

    if end is None:
        end = list(en)[0]
    else:
        if end > list(en)[0]:
            end = list(en)[0]
            LOGGER.debug(
                'end was after the last common timestepp, set end to last common timestep '
            )

    from datetime import datetime as dt
    from datetime import timedelta

    start = dt.strptime(start, '%Y%M%d')
    end = dt.strptime(end, '%Y%M%d')
    length = end - start

    # set the periodes:
    try:
        if timeslice is None:
            td = lenth / 3
        else:
            td = timedelta(days=timeslice)
            if td > length:
                td = lenth / 3
                LOGGER.debug(
                    'timeslice is larger as whole timeseries! set timeslice to third of timeseries'
                )

        start_td = start + td
        end_td = end - td
        LOGGER.info('timeslice and periodes set')
    except:
        msg = 'failed to set the periodes'
        LOGGER.exception(msg)

    try:
        files = []
        for i, mf in enumerate(mergefiles):
            files.append(
                cdo.selyear('{0}/{1}'.format(start.year, end.year),
                            input=[mf.replace(' ', '\ ')],
                            output='file_{0}_.nc'.format(i)))  # python version
        LOGGER.info('timeseries selected from defined start to end year')
    except:
        msg = 'seltime and mergetime failed'
        LOGGER.exception(msg)

    try:
        # ensemble mean
        nc_ensmean = cdo.ensmean(input=files, output='nc_ensmean.nc')
        LOGGER.info('ensemble mean calculation done')
    except:
        msg = 'ensemble mean failed'
        LOGGER.exception(msg)

    try:
        # ensemble std
        nc_ensstd = cdo.ensstd(input=files, output='nc_ensstd.nc')
        LOGGER.info('ensemble std and calculation done')
    except:
        msg = 'ensemble std or failed'
        LOGGER.exception(msg)

    # get the get the signal as difference from the beginning (first years) and end period (last years), :
    try:
        selyearstart = cdo.selyear('%s/%s' % (start.year, start_td.year),
                                   input=nc_ensmean,
                                   output='selyearstart.nc')
        selyearend = cdo.selyear('%s/%s' % (end_td.year, end.year),
                                 input=nc_ensmean,
                                 output='selyearend.nc')
        meanyearst = cdo.timmean(input=selyearstart, output='meanyearst.nc')
        meanyearend = cdo.timmean(input=selyearend, output='meanyearend.nc')
        signal = cdo.sub(input=[meanyearend, meanyearst], output='signal.nc')
        LOGGER.info('Signal calculation done')
    except:
        msg = 'calculation of signal failed'
        LOGGER.exception(msg)
        _, signal = mkstemp(dir='.', suffix='.nc')

    # get the intermodel standard deviation (mean over whole period)
    try:
        # std_selyear = cdo.selyear('%s/%s' % (end1,end2), input=nc_ensstd, output='std_selyear.nc')
        # std = cdo.timmean(input = std_selyear, output = 'std.nc')

        std = cdo.timmean(input=nc_ensstd, output='std.nc')
        std2 = cdo.mulc('2', input=std, output='std2.nc')
        LOGGER.info('calculation of internal model std for time period done')
    except:
        msg = 'calculation of internal model std failed'
        LOGGER.exception(msg)
    try:
        # absolut = cdo.abs(input=signal, output='absolut_signal.nc')  # don't get the sence of this step :-)

        high_agreement_mask = cdo.gt(input=[signal, std2],
                                     output='signal_larger_than_noise.nc')
        low_agreement_mask = cdo.lt(input=[signal, std],
                                    output='signal_smaller_than_noise.nc')
        LOGGER.info('high and low mask done')
    except:
        msg = 'calculation of robustness mask failed'
        LOGGER.exception(msg)
        _, high_agreement_mask = mkstemp(dir='.', suffix='.nc')
        _, low_agreement_mask = mkstemp(dir='.', suffix='.nc')

    return signal, low_agreement_mask, high_agreement_mask, text_src
Exemplo n.º 31
0
def calc_indice_simple(resource=[], variable=None, prefix=None,indices=None,
    polygons=None, mosaik = False, groupings='yr', dir_output=None, dimension_map = None, memory_limit=None):
    """
    Calculates given simple indices for suitable files in the appopriate time grouping and polygon.

    :param resource: list of filenames in drs convention (netcdf)
    :param variable: variable name to be selected in the in netcdf file (default=None)
    :param indices: list of indices (default ='SU')
    :param polygons: list of polgons (default ='FRA')
    :param grouping: indices time aggregation (default='yr')
    :param out_dir: output directory for result file (netcdf)
    :param dimension_map: optional dimension map if different to standard (default=None)

    :return: list of netcdf files with calculated indices. Files are saved into out_dir
    """
    from os.path import join, dirname, exists
    from flyingpigeon import ocgis_module
    from flyingpigeon.subset import clipping
    import uuid

    #DIR_SHP = config.shapefiles_dir()
    #env.DIR_SHPCABINET = DIR_SHP
    #env.OVERWRITE = True

    if type(resource) != list: 
      resource = list([resource])
    if type(indices) != list: 
      indices = list([indices])
    if type(polygons) != list and polygons != None:
      polygons = list([polygons])
    if type(groupings) != list:
      groupings = list([groupings])
    
    if dir_output != None:
      if not exists(dir_output): 
        makedirs(dir_output)
    
    #from flyingpigeon.subset import select_ugid
    #    tile_dim = 25
    output = None


    experiments = sort_by_filename(resource)
    outputs = []
    
    for key in experiments:
      if variable == None: 
        variable = get_variable(experiments[key][0])
        #variable = key.split('_')[0]
      try: 
        
        if variable == 'pr': 
          calc = 'pr=pr*86400'
          ncs = ocgis_module.call(resource=experiments[key],
                     variable=variable,
                     dimension_map=dimension_map, 
                     calc=calc,
                     memory_limit=memory_limit,
                     #alc_grouping= calc_group, 
                     prefix=str(uuid.uuid4()), 
                     dir_output=dir_output,
                     output_format='nc')

        else:
          
          ncs = experiments[key]         
        for indice in indices:
          logger.info('indice: %s' % indice)
          try: 
            calc = [{'func' : 'icclim_' + indice, 'name' : indice}]
            logger.info('calc: %s' % calc)
            for grouping in groupings:
              logger.info('grouping: %s' % grouping)
              try:
                calc_group = calc_grouping(grouping)
                logger.info('calc_group: %s' % calc_group)
                if polygons == None:
                  try:
                    if prefix == None:   
                      prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping )
                    tmp = ocgis_module.call(resource=ncs,
                     variable=variable,
                     dimension_map=dimension_map, 
                     calc=calc,
                     calc_grouping= calc_group, 
                     prefix=prefix, 
                     dir_output=dir_output,
                     output_format='nc')
                    outputs.extend( [tmp] )
                  except Exception as e:
                    msg = 'could not calc indice %s for domain in %s' %( indice, key)
                    logger.exception( msg )
                    raise Exception(msg)   
                else:
                  try:
                    if prefix == None:   
                      prefix = key.replace(variable, indice).replace('_day_','_%s_' % grouping )
                    tmp = clipping(resource=ncs,
                     variable=variable,
                     dimension_map=dimension_map, 
                     calc=calc,
                     calc_grouping= calc_group, 
                     prefix=prefix, 
                     polygons=polygons,
                     mosaik=mosaik,
                     dir_output=dir_output,
                     output_format='nc')
                    outputs.extend( [tmp] )
                  except Exception as e:
                    msg = 'could not calc indice %s for domain in %s' %( indice, key)
                    logger.exception( msg )
                    raise Exception(msg)
                logger.info('indice file calculated')      
              except Exception as e:
                msg = 'could not calc indice %s for key %s and grouping %s' %  (indice, key, grouping)
                logger.exception(msg)
                raise Exception(msg)  
          except Exception as e:
            msg = 'could not calc indice %s for key %s' % ( indice, key)
            logger.exception(msg)
            raise Exception(msg)        
      except Exception as e:
        msg = 'could not calc key %s' % key
        logger.exception(msg)
        raise Exception(msg)
    return outputs
Exemplo n.º 32
0
def method_A(resource=[],
             start=None,
             end=None,
             timeslice=20,
             variable=None,
             title=None,
             cmap='seismic'):
    """returns the result

    :param resource: list of paths to netCDF files
    :param start: beginning of reference period (if None (default),
                  the first year of the consistent ensemble will be detected)
    :param end: end of comparison period (if None (default), the last year of the consistent ensemble will be detected)
    :param timeslice: period length for mean calculation of reference and comparison period
    :param variable: variable name to be detected in the netCDF file. If not set (not recommended),
                     the variable name will be detected
    :param title: str to be used as title for the signal mal
    :param cmap: define the color scheme for signal map plotting

    :return: signal.nc, low_agreement_mask.nc, high_agreement_mask.nc, graphic.png, text.txt
    """
    from os.path import split
    from cdo import Cdo
    cdo = Cdo()
    cdo.forceOutput = True

    try:
        # preparing the resource
        file_dic = sort_by_filename(resource, historical_concatination=True)
        logger.info('file names sorted experimets: %s' % len(file_dic.keys()))
    except Exception as e:
        msg = 'failed to sort the input files'
        logger.exception(msg)
        raise Exception(msg)

    try:
        mergefiles = []
        for key in file_dic.keys():

            if type(file_dic[key]) == list and len(file_dic[key]) > 1:
                input = []
                for i in file_dic[key]:
                    input.extend([i.replace(' ', '\\\ ')])
                    mergefiles.append(
                        cdo.mergetime(input=input,
                                      output=key + '_mergetime.nc'))
            else:
                mergefiles.extend(file_dic[key])
        logger.info('datasets merged %s ' % mergefiles)
    except Exception as e:
        msg = 'seltime and mergetime failed %s' % e
        logger.exception(msg)
        raise Exception(e)

    try:
        text_src = open('infiles.txt', 'a')
        for key in file_dic.keys():
            text_src.write(key + '\n')
        text_src.close()
    except Exception as e:
        msg = 'failed to write source textfile'
        logger.exception(msg)
        raise Exception(msg)

# configure reference and compare period
    try:
        if start is None:
            st_set = set()
            en_set = set()
            for f in mergefiles:
                times = get_time(f)
                st_set.update([times[0].year])
        if end is None:
            en_set.update([times[-1].year])
            start = max(st_set)
        if end is None:
            end = min(en_set)
        logger.info('Start and End: %s - %s ' % (start, end))
        if start >= end:
            logger.error(
                'ensemble is inconsistent!!! start year is later than end year'
            )
    except Exception as e:
        msg = 'failed to detect start and end times of the ensemble'
        logger.exception(msg)
        raise Exception(msg)

# set the periodes:
    try:
        start = int(start)
        end = int(end)
        if timeslice is None:
            timeslice = int((end - start) / 3)
            if timeslice == 0:
                timeslice = 1
        else:
            timeslice = int(timeslice)
        start1 = start
        start2 = start1 + timeslice - 1
        end1 = end - timeslice + 1
        end2 = end
        logger.info('timeslice and periodes set')
    except Exception as e:
        msg = 'failed to set the periodes'
        logger.exception(msg)
        raise Exception(msg)

    try:
        files = []
        for i, mf in enumerate(mergefiles):
            files.append(
                cdo.selyear('{0}/{1}'.format(start1, end2),
                            input=[mf.replace(' ', '\ ')],
                            output='file_{0}_.nc'.format(i)))  # python version
        logger.info('timeseries selected from defined start to end year')
    except Exception as e:
        msg = 'seltime and mergetime failed'
        logger.exception(msg)
        raise Exception(msg)

    try:
        # ensemble mean
        nc_ensmean = cdo.ensmean(input=files, output='nc_ensmean.nc')
        logger.info('ensemble mean calculation done')
    except Exception as e:
        msg = 'ensemble mean failed'
        logger.exception(msg)
        raise Exception(msg)

    try:
        # ensemble std
        nc_ensstd = cdo.ensstd(input=files, output='nc_ensstd.nc')
        logger.info('ensemble std and calculation done')
    except Exception as e:
        msg = 'ensemble std or failed'
        logger.exception(msg)
        raise Exception(msg)

#  get the get the signal as difference from the beginning (first years) and end period (last years), :
    try:
        selyearstart = cdo.selyear('%s/%s' % (start1, start2),
                                   input=nc_ensmean,
                                   output='selyearstart.nc')
        selyearend = cdo.selyear('%s/%s' % (end1, end2),
                                 input=nc_ensmean,
                                 output='selyearend.nc')
        meanyearst = cdo.timmean(input=selyearstart, output='meanyearst.nc')
        meanyearend = cdo.timmean(input=selyearend, output='meanyearend.nc')
        signal = cdo.sub(input=[meanyearend, meanyearst], output='signal.nc')
        logger.info('Signal calculation done')
    except Exception as e:
        msg = 'calculation of signal failed'
        logger.exception(msg)
        raise Exception(msg)

    # get the intermodel standard deviation (mean over whole period)
    try:
        # std_selyear = cdo.selyear('%s/%s' % (end1,end2), input=nc_ensstd, output='std_selyear.nc')
        # std = cdo.timmean(input = std_selyear, output = 'std.nc')

        std = cdo.timmean(input=nc_ensstd, output='std.nc')
        std2 = cdo.mulc('2', input=std, output='std2.nc')
        logger.info('calculation of internal model std for time period done')
    except Exception as e:
        msg = 'calculation of internal model std failed'
        logger.exception(msg)
        raise Exception(msg)
    try:
        absolut = cdo.abs(input=signal, output='absolut_signal.nc')
        high_agreement_mask = cdo.gt(
            input=[absolut, std2],
            output='large_change_with_high_model_agreement.nc')
        low_agreement_mask = cdo.lt(
            input=[absolut, std],
            output='small_signal_or_low_agreement_of_models.nc')
        logger.info('high and low mask done')
    except Exception as e:
        msg = 'calculation of robustness mask failed'
        logger.exception(msg)
        raise Exception(msg)

    try:
        if variable is None:
            variable = get_variable(signal)
        logger.info('variable to be plotted: %s' % variable)

        if title is None:
            title = 'Change of %s (difference of mean %s-%s to %s-%s)' % (
                variable, end1, end2, start1, start2)
        graphic = None
        graphic = map_ensembleRobustness(signal,
                                         high_agreement_mask,
                                         low_agreement_mask,
                                         variable=variable,
                                         cmap=cmap,
                                         title=title)

        logger.info('graphic generated')
    except Exception as e:
        msg('graphic generation failed: %s' % e)
        logger.debug(msg)
        raise Exception(msg)

    return signal, low_agreement_mask, high_agreement_mask, graphic, text_src  #
Exemplo n.º 33
0
        data[str(indice)] = ro.FloatVector(ravel(vals))

    dataf = ro.DataFrame(data)
    predict_gam = mgcv.predict_gam(gam_model,
                                   newdata=dataf,
                                   type="response",
                                   progress="text",
                                   newdata_guaranteed=True,
                                   na_action=stats.na_pass)
    prediction = array(predict_gam).reshape(dims)
    return prediction


p = "/home/nils/data/AFR-44/tas/"
ncs = [path.join(p, nc) for nc in listdir(p)]
ncd = utils.sort_by_filename(ncs)
geom = subset.get_geom('CMR')
ugid = subset.get_ugid('CMR', geom=geom)

# from ocgis import RequestDataset, OcgOperations

keys = ncd.keys()
print len(keys)

ocgis.env.OVERWRITE = True

dmap = ocgis.DimensionMap()
dmap.set_variable('x', 'lon', dimension='rlon')
dmap.set_variable('y', 'lat', dimension='rlat')
dmap.set_variable('time', 'time', dimension='time')
Exemplo n.º 34
0
def clipping(resource=[], variable=None, dimension_map=None, calc=None,  output_format='nc',
  calc_grouping= None, time_range=None, time_region=None,  historical_concatination=True, prefix=None, spatial_wrapping='wrap', polygons=None, mosaik=False, dir_output=None, memory_limit=None):
  """ returns list of clipped netCDF files
  possible entries: 
  :param resource: list of input netCDF files
  :param variable: variable (string) to be used in netCDF
  :param dimesion_map: specify a dimension map input netCDF has unconventional dimension
  :param calc: ocgis calculation argument
  :param calc_grouping: ocgis calculation grouping 
  :param historical_concatination: concat files of RCPs with appropriate historical runs to one timeseries 
  :param prefix: perfix for output file name
  :param polygons: list of polygons to be used. if more than 1 in the list, a appropriate mosaik will be clipped
  :param output_format: output_format (default='nc')
  :param dir_output: specify a output location
  """
  
  from flyingpigeon.utils import get_variable, drs_filename
  from flyingpigeon.ocgis_module import call
  
  if type(resource) != list: 
    resource = list([resource])
  if type(polygons) != list:
    polygons = list([polygons])
  if prefix != None:
    if type(prefix) != list:
      prefix = list([prefix])
  
  geoms = set()
  ncs = sort_by_filename(resource, historical_concatination=historical_concatination) #  historical_concatination=True
  geom_files = []
  if mosaik == True :
    try:
      nameadd = '_'
      for polygon in polygons: 
        geoms.add(get_geom(polygon))
        nameadd = nameadd + '-' + polygon  
      if len(geoms) > 1: 
        logger.error('polygons belong to differnt shapefiles! mosaik option is not possible %s', geoms)
      else: 
        geom = geoms.pop()
      ugids = get_ugid(polygons=polygons, geom=geom)
    except Exception as e:
      logger.debug('geom identification failed %s ' % e)
    for i, key in enumerate (ncs.keys()):
      try:
        if variable == None:
          variable = get_variable(ncs[key])
          logger.info('variable %s detected in resource' % (variable))
        if prefix == None:
          name = key + nameadd
        else:
          name = prefix[i]
        geom_file = call(resource=ncs[key], variable=variable, calc=calc, calc_grouping=calc_grouping, output_format=output_format,
                         prefix=name, geom=geom, select_ugid=ugids, time_range=time_range, time_region=time_region, 
                         spatial_wrapping=spatial_wrapping, memory_limit=memory_limit,
                         dir_output=dir_output, dimension_map=dimension_map)
        geom_files.append( geom_file )  
      except Exception as e:
        msg = 'ocgis calculations failed for %s ' % (key)
        logger.debug(msg)
  else: 
    for i, polygon in enumerate(polygons): 
      try:
        geom = get_geom(polygon)
        ugid = get_ugid(polygons=polygon, geom=geom)
        for key in  ncs.keys():
          try:
            if variable == None:
              variable = get_variable(ncs[key])
              logger.info('variable %s detected in resource' % (variable))  
            if prefix == None: 
              name = key + '_' + polygon
            else:
              name = prefix[i]
            geom_file = call(resource=ncs[key], variable=variable,  calc=calc, calc_grouping=calc_grouping,output_format=output_format,
              prefix=name, geom=geom, select_ugid=ugid, dir_output=dir_output, dimension_map=dimension_map, spatial_wrapping=spatial_wrapping, memory_limit=memory_limit,time_range=time_range, time_region=time_region,
              )
            geom_files.append( geom_file )
          except Exception as e:
            msg = 'ocgis calculations failed for %s ' % (key)
            logger.debug(msg)
            raise
      except Exception as e:
          logger.debug('geom identification failed')
          raise
  return  geom_files
                    }).execute()
print ops

from flyingpigeon.utils import sort_by_filename
from flyingpigeon.ocgis_module import call

#
# kwds = {'percentile': percentile, 'window_width': 5}
# calc = [{'func': 'daily_perc', 'name': 'dp', 'kwds': kwds}]
# #
# ops = OcgOperations(dataset=rd, calc=calc,
#                     output_format='nc',
#                     time_region={'year': [1980, 1990]}
#                     ).execute()

datasets = sort_by_filename(resource, historical_concatination=True)
results = []

print datasets.keys()

for key in datasets.keys():
    result = call(
        resource=datasets[key],
        output_format='nc',
        calc=calc,
        prefix='call_',
        # time_region={'year': [1995, 2000]}
        #   calc_grouping='year'
    )
    results.extend(result)
    print result