Exemplo n.º 1
0
    def waypoint_reached_callback(self, msg):
        print "Waypoint {0} reached.".format(self.num_visited)
        self.cgeopose_ = msg
        self.cpose_ = msg.position
        self.cquat_ = msg.orientation
        self.pp = geodesy.utm.fromMsg(self.cpose_)

        if not hasattr(self, "zero_utm"):
            print "Waypoint 0: defining local origin."
            self.zero_utm = self.pp
        self.num_visited += 1

        # Wait for valid/recent sonar data
        waiter = True
        while rospy.Time.now() > self.sonar_time + rospy.Duration(0.5):
            if waiter:
                waiter = False
                print "Waiting for valid sonar data"
            time.sleep(0.1)
        print "Sonar data recorded, depth = {0}m".format(self.sonar_depth)

        # Current position in world frame
        self.clocalpos = self.get_local_coords(self.pp)
        print "Current local position: {0}, {1}".format(self.clocalpos[0], self.clocalpos[1])
        self.observations[self.num_visited - 1, :] = np.array(
            [
                rospy.Time.now().secs,
                self.cpose_.latitude,
                self.cpose_.longitude,
                self.clocalpos[0],
                self.clocalpos[1],
                self.sonar_depth,
            ]
        )
        tt = time.time()

        # Current position in grid frame
        # cX = np.array([clocalpos[0]-self.origin_offset[0], clocalpos[1]-self.origin_offset[1]])

        if self.num_visited <= 1:
            # Initial sample set
            X = np.reshape(self.clocalpos, (1, 2))
            Y = np.zeros((1, 1))
            Y[0] = self.sonar_depth
            self.fm_sampling_explorer = bfm_explorer.fast_marching_explorer(
                self.gridsize,
                self.start_node,
                self.goal_node,
                X,
                Y,
                obs=self.true_g.obstacles,
                mean_value=self.mean_depth,
                GP_l=self.GPm.kern.lengthscale[0] * 1.0,
                GP_sv=self.GPm.kern.variance[0] * 1.0,
                GP_sn=self.GPm.Gaussian_noise.variance[0] * 5.0,
                max_depth=self.max_depth,
                mean_depth=self.mean_depth,
                bl_corner=[self.operating_region.left, self.operating_region.bottom],
            )
            self.fm_sampling_explorer.search()
            self.poly_cost = fm_graphtools.polynomial_precompute_cost_modifier(self.true_g, 14, min_val=0.001)
            print "Initial setup took {0:0.2f}s".format(time.time() - tt)

        elif self.num_visited == self.total_waypoints:
            print "Arrived at final waypoint, saving data."
            fh = open("lutra_fastmarchlog_" + self.nowstr + ".p", "wb")
            pickle.dump(self.fm_sampling_explorer.X, fh)
            pickle.dump(self.fm_sampling_explorer.Y, fh)
            pickle.dump(self.observations, fh)
            fh.close()
            # self.plot_current_path(self.get_local_coords(pp))
            # try:
            #    ani1 = animation.ArtistAnimation(self.fig, self.video_frames, interval=1000, repeat_delay=0)
            #    ani1.save('fm_explorer_'+self.nowstr+'.mp4', writer = 'avconv', fps=1, bitrate=1500)
            # except:
            #    print "Saving video directly failed."
            #
            # fh = open('lutra_videoframes_'+self.nowstr+'.p', 'wb')
            # try:
            #    pickle.dump(self.fig, fh)
            #    pickle.dump(self.video_frames)
            # except:
            #    print "Dumping video frames to file failed"
            # fh.close()
            return

        else:
            if self.continuous_sonar:  # pop off all the recent sonar data
                oX = []
                oY = []
                while True:
                    try:
                        cO = self.sonar_buffer.pop()
                        oX.append([cO[0], cO[1]])
                        oY.append(cO[2])
                    except IndexError:
                        break
                oX = np.array(oX)
                oY = np.reshape(oY, (len(oY), 1))
            else:
                oX = [self.clocalpos]
                oY = [[self.sonar_depth]]
            self.fm_sampling_explorer.add_observation(oX, oY)
            print "Adding {1} new sample(s) took {0:0.2f}s".format(time.time() - tt, len(oY))

        # Find next sample point
        fm_best_cost = -1
        tt = time.time()
        for ii in range(self.sample_locations.shape[0]):
            [tx, ty] = self.sample_locations[ii]
            # print self.fm_sampling_explorer.cmodel.var_dict
            # if  ((tx,ty) not in self.true_g.obstacles) and not self.previously_sampled([tx,ty]):
            current_value = 0
            for td in self.delta_costs:
                stdY = self.fm_sampling_explorer.GP_cost_graph.var_fun(tx, ty)  # math.sqrt()
                cost_update = self.poly_cost.calc_cost(tx, ty, td * stdY)
                current_value += self.fm_sampling_explorer.cost_update_new(cost_update)
            # print "Sample {0:2d} at ({1:4d},{2:4d}), std={3:0.3f}, pcost={4:0.3f}".format(ii,tx,ty,stdY,current_value)
            if fm_best_cost == -1 or (current_value < fm_best_cost):
                fm_best_cost = current_value
                fm_bestX = [tx, ty]
                fm_bestVar = stdY
                fm_besti = ii
        print "Finding best sample took {0:0.2f}s.".format(time.time() - tt)
        target_utm = self.get_utm_coords(fm_bestX)
        print "Next target point selected: E = {0}m, N = {1}m (c={2:0.3f}, std={3:0.3f}, i={4}).".format(
            fm_bestX[0], fm_bestX[1], fm_best_cost, fm_bestVar, fm_besti
        )
        self.pub_point(target_utm)
        self.sonar_buffer.clear()
        tt = time.time()
        self.plot_current_path(fm_bestX)
        print "Plotting took {0:0.2f}s.".format(time.time() - tt)
        self.create_random_samples()
Exemplo n.º 2
0
    true_g.update_obstacles(fm_plottools.generate_obstacles(true_g, num_obstacles, obstacle_size))
start_node = (3,3)
while start_node in true_g.obstacles:
    start_node = (start_node[0]+1, start_node[1])
end_node = (gridsize[0]-3, gridsize[1]-3)
while end_node in true_g.obstacles:
    end_node = (end_node[0]-1, end_node[1])

cblobs = []
for ii in range(num_blobs):
    cblobs.append([random.uniform(-10,gridsize[0]+10), random.uniform(-10,gridsize[1]+10), 
        random.uniform(spread_range[0], spread_range[1]), random.uniform(peak_range[0], peak_range[1])])
explorer_cost = bfm_explorer.mat_cost_function(true_g, explore_cost_function, cblobs)
true_g.cost_fun = explorer_cost.calc_cost

poly_cost_obj = fm_graphtools.polynomial_precompute_cost_modifier(true_g, 13, min_val=0.001)
        
start_node = (3,3)
end_node = (97, 97)
while start_node in true_g.obstacles:
    start_node = (start_node[0]+1, start_node[1])
while end_node in true_g.obstacles:
    end_node = (end_node[0]-1, end_node[1])

X = np.array([[3,3],[80,95], [55,45], [25,30], [38,60], [52,30],[65,70],[37,45],[14,41],[80,30],[83,85],[97,63]])
Xshape = X.shape
Y = np.zeros((Xshape[0], 1))
for ii in range(Xshape[0]):
    Y[ii] = sample_cost_fun(explore_cost_function, X[ii,:], cblobs)

fm_sampling_explorer = bfm_explorer.fast_marching_explorer(gridsize, start_node, end_node, X, Y, mean_value=mean_value, obs=true_g.obstacles,
Exemplo n.º 3
0
t0 = time.time()
fbFM.search()
t_searchfbFM = time.time()-t0
print "Done. Search took {0}s".format(t_searchfbFM)



eFM = copy.deepcopy(FM)
ubFM = copy.deepcopy(bFM)

#bFM_reset(ubFM, bFM, g)
#ccost =fm_graphtools.square_cost_modifier(g, 25, 37, 88, 97, -0.991526711378)
#ubFM.update(ccost)

poly_cost = fm_graphtools.polynomial_precompute_cost_modifier(g, 12, min_val=0.001)

for ii in range(NUM_TESTS):
    xlo = random.randint(5, g.width-5)
    ylo = random.randint(5, g.height-5)
    modcost = 1.9*random.random()-1
    #dx = random.randint(1, 20)
    #dy = random.randint(1, 20)
    #cost_update = fm_graphtools.square_cost_modifier(g, xlo, xlo+dx, ylo, ylo+dy, modcost)
    #print "Square map update {0}, ({1},{2}) to ({3},{4}), delta = {5}".format(ii, xlo, ylo, xlo+dx, ylo+dy, modcost)
    cost_update = poly_cost.set_update(xlo,ylo,modcost)
    print "Poly map update {0}, ({1},{2}), delta = {3}".format(ii, xlo, ylo, modcost)
    print "Method | Time (s) | SNodes | DNodes |   Cost  |"
    
    ug = g.copy()
    ug.add_delta_costs(cost_update)