Exemplo n.º 1
0
    def adds_dels(self):
        for f in self.fluent_lits:
            self.adds_fluent[f] = []
            self.dels_fluent[f] = []

        for a in self.effects:
            effect = self.effects[a]
            if effect is None:
                pass
            elif effect.name != 'and':
                raise MyError('effect isnt and')
            else:
                for arg in effect.args:
                    if arg.name == 'Primitive':
                        raise MyError('this should not be here')
                    elif arg.name == 'Literal':
                        self.adds_fluent[arg].append(And([a]))
                    elif arg.name == 'not':
                        if arg.args[0].name != 'Literal':
                            raise MyError('nope')
                        else:
                            self.dels_fluent[arg.args[0]].append(And([a]))
                    elif arg.name == 'when':
                        result = arg.result
                        if result.name != 'and':
                            raise MyError('when result ?')
                        for r in result.args:
                            if r.name == 'Literal':
                                self.adds_fluent[r].append(And([a, arg.condition]))
                            elif r.name == 'not':
                                self.dels_fluent[r.args[0]].append(And([a, arg.condition]))
                            else:
                                raise MyError('whenresult {}'.format(r.name))
                    else:
                        raise MyError('whhaaaaa')
Exemplo n.º 2
0
    def _parse_problem(self, f_problem):
        """
        Extract information from the problem file.

        The following will be extracted:
            * problem name
            * objects
            * initial state
            * goal state
            * type_to_obj
            * obj_to_type
        """

        parse_tree = PDDL_Tree.create(f_problem)

        assert "problem" in parse_tree, "Problem must have a name"
        self.problem_name = parse_tree["problem"].named_children()[0]

        # objects must be parsed first
        if ":objects" in parse_tree:
            object_list = PDDL_Utils.read_type(parse_tree[":objects"])
            self._add_objects(object_list)

        #TODO this may not be valid with a non-flat type hierchy
        obj_map = {obj: list(self.obj_to_type[obj])[0] for obj in self.objects}

        # the goal can be expressed in either a formula form, or a direct form
        if len(parse_tree[":goal"].children
               ) == 1 and parse_tree[":goal"].children[0].name == "and":
            self.goal = And([
                Primitive(self.to_fluents(c))
                for c in parse_tree[":goal"].children[0].children
            ])
        else:
            self.goal = And([
                Primitive(self.to_fluents(c))
                for c in parse_tree[":goal"].children
            ])

        # it is critical that the formula here be checked against the objects
        if len(parse_tree[":init"].children) == 1 and \
                parse_tree[":init"].children[0].name == "and":
            self.init = self.to_formula(parse_tree[":init"].children[0],
                                        obj_map)
        else:
            # initial condition is one big AND
            #            print "```", self.init
            self.init = And([
                self.to_formula(c, obj_map)
                for c in parse_tree[":init"].children
            ])
Exemplo n.º 3
0
 def __init__(self, p, h):
     self.problem = p
     self.initial = p.init
     # self.actions = p.actions
     self.goal = p.goal
     # self.type_to_obj = p.type_to_obj
     # self.objects = p.obj_to_type
     self.fluents = p.fluents
     self.operators = p.operators
     self.precs = {}
     self.effects = {}
     self.observes = {}
     self.adds_fluent = {}#use
     self.dels_fluent = {}#use
     self.horizon = h
     self.j = 1
     self.logic = Logic()
     self.jk = []
     self.fluent_lits = []
     self.op_lits = []
     self.djk_lits = []
     self.all_literals = []
     self.initial_lits = None
     self.subproblems = []
     self.init_known = None
     self.lit_dict = {}
     self.lit_lookup = {}
     self.dg_atom = Predicate('DG', None, [])
     self.fluents.add(self.dg_atom)
     self.end_atom = Operator('End', [], self.goal, None, And([Primitive(self.dg_atom)]))
     self.operators.add(self.end_atom)
Exemplo n.º 4
0
    def add_observes(self):
        self.check.write('OBSERVES \n')
        for djk in self.jk:
            self.printtofile(Not([Literal('D', djk, 0)]))

        for (j,k) in self.jk:
            for t in range(self.horizon-1):
                djkt = self.lit_lookup['D', (j,k), t+1]
                djkt0 = self.lit_lookup['D', (j,k), t]
                self.printtofile(When(djkt0, djkt))
                for o in self.possible_ops:
                    if o.observe is None:
                        ajt = self.lit_lookup[o,j,t]
                        akt = self.lit_lookup[o,k,t]
                        (When(And([Not([djkt0]), ajt]), Not([djkt])))
                        (When(And([Not([djkt0]), akt]), Not([djkt])))
                    else:
                        obs = o.observe
                        ajt = self.lit_lookup[o, j, t]
                        akt = self.lit_lookup[o, k, t]
                        obsjt = self.lit_lookup[obs, j, t]
                        obskt = self.lit_lookup[obs, k, t]
                        iff = And([Not([djkt0]), ajt, obsjt, Not([obskt]) ])
                        thenf = djkt
                        self.printtofile(When(iff,thenf))
                        iff = And([Not([djkt0]), ajt, obskt, Not([obsjt]) ])
                        self.printtofile(When(iff,thenf))

                        iff = And([Not([djkt0]), akt, obsjt, Not([obskt])])
                        thenf = djkt
                        self.printtofile(When(iff, thenf))
                        iff = And([Not([djkt0]), akt, obskt, Not([obsjt])])
                        self.printtofile(When(iff, thenf))

                        iff = And([Not([djkt0]), ajt, obsjt, obskt])
                        thenf = Not([djkt])
                        self.printtofile(When(iff, thenf))
                        iff = And([Not([djkt0]), ajt, Not([obskt]), Not([obsjt])])
                        self.printtofile(When(iff, thenf))

                        iff = And([Not([djkt0]), akt, obsjt, obskt])
                        thenf = Not([djkt])
                        self.printtofile(When(iff, thenf))
                        iff = And([Not([djkt0]), akt, Not([obskt]), Not([obsjt])])
                        self.printtofile(When(iff, thenf))
Exemplo n.º 5
0
    def add_restrictions(self):
        self.check.write('RESTRICTIONS \n')
        pos = list(self.possible_ops)
        for i in range(len(pos)-1):
            for l in range(i+1, len(pos)):
                a1 = pos[i]
                a2 = pos[l]
                for t in range(self.horizon-1):
                    for j in range(self.j):
                        a1jt = self.lit_lookup[a1, j, t]
                        a2jt = self.lit_lookup[a2, j, t]
                        self.printtofile(When(a1jt, Not([a2jt])))
                    for (j,k) in self.jk:
                        a1jt = self.lit_lookup[a1, j, t]
                        a2kt = self.lit_lookup[a2, k, t]
                        a1kt = self.lit_lookup[a1, k, t]
                        a2jt = self.lit_lookup[a2, j, t]
                        djkt = self.lit_lookup['D', (j,k), t]
                        self.printtofile(When(And([a1jt, a2kt]), djkt))
                        self.printtofile(When(And([a1kt, a2jt]), djkt))
        for o in pos:
            for t in range(self.horizon-1):
                for (j, k) in self.jk:
                    ajt = self.lit_lookup[o,j,t]
                    akt = self.lit_lookup[o,k,t]
                    djkt = self.lit_lookup['D', (j,k), t]
                    self.printtofile(When(And([ajt, Not([djkt])]),akt ))
                    self.printtofile(When(And([akt, Not([djkt])]), ajt))

        for j in range(self.j):
            for t in range(self.horizon-1):
                # alist = [self.lit_lookup[o,j,t] for o in pos]
                # dgjt = self.lit_lookup[self.dg_atom, j,t]
                # self.printtofile(Or([dgjt]+alist))
                goallist = [self.lit_lookup[g.predicate,j,t] for g in self.goal.args ]
                enda = self.lit_lookup[self.end_atom, j, t]
                self.printtofile(When(And(goallist), enda))
                dgjt = self.lit_lookup[self.dg_atom, j,t]
                alist = [self.lit_lookup[o, j, t] for o in pos]
                self.printtofile(When(dgjt, Not([Or(alist)])))
Exemplo n.º 6
0
    def add_persistence(self):
        self.check.write('PERSISTENCE \n')
        for j in range(self.j):
            for t in range(self.horizon-1):
                for p in self.fluents:
                    pjt = self.lit_lookup[p,j,t+1]
                    pjt0 = self.lit_lookup[p,j,t]
                    adds = self.adds_fluent[pjt]

                    if len(adds) > 0:
                        iff = And([Not([pjt0])] + [Not([a]) for a in adds])
                        thenf = Not([pjt])
                        self.printtofile(When(iff, thenf))
                    else:
                        self.printtofile(When(Not([pjt0]), Not([pjt])))

                    dels = self.dels_fluent[pjt]
                    if len(dels) > 0:
                        iff = And([pjt0] + [Not([a]) for a in dels])
                        thenf = pjt
                        self.printtofile(When(iff, thenf))
                    else:
                        self.printtofile(When(pjt0, pjt))
Exemplo n.º 7
0
    def create_literals(self):

        self.all_atoms = list(self.fluents) + list(self.possible_ops) + self.jk
        for t in range(self.horizon):
            for j in range(self.j):
                for f in self.fluents:
                    lit = Literal('fluent', f, (j,t))
                    self.fluent_lits.append(lit)
                    self.lit_lookup[f, j, t] = lit
        for t in range(self.horizon-1):
            for j in range(self.j):
                for o in self.possible_ops:
                    lit = Literal('action', o, (j,t))
                    self.op_lits.append(lit)
                    self.lit_lookup[o, j, t] = lit
                    self.precs[lit] = self.lit_formula(o.precondition, j,t)
                    self.effects[lit] = self.lit_formula(o.effect, j, t+1)
                    self.observes[lit] = self.lit_formula(o.observe,j,t+1)
                    if o.name == 'End':
                        self.effects[lit] = And([ self.effects[lit], self.lit_formula(Primitive(self.dg_atom), j, self.horizon-1)])

        for t in range(self.horizon):
            for djk in self.jk:
                lit = Literal('D', djk, t)
                self.djk_lits.append(Literal('D', djk, t))
                self.lit_lookup['D',djk, t] = lit

        self.all_literals = self.fluent_lits + self.op_lits + self.djk_lits
        self.goal_lits = [self.lit_lookup[self.dg_atom, j, self.horizon-1] for j in range(self.j)]
        self.initial_lits = [self.lit_formula(self.init_known, j, 0) for j in range(self.j)]
        self.subinit_lits = [self.lit_formula(And(self.subproblems[j]),j, 0) for j in range(self.j)]
        self.initnot_lits = [self.lit_formula(And([Not([Primitive(i)])   for i in self.initnot]),j,0) for j in range(self.j)]

        d = 1
        for l in self.all_literals:
            self.lit_dict[l] = d
            d += 1
Exemplo n.º 8
0
 def norm_init(self, formula):
     oneofs = []
     ooset = set([])
     new_args = formula.args[:]
     for f in formula.args:
         if f.name == 'oneof':
             oneofs.append(f)
             new_args.remove(f)
     oneargs = [[]]
     for o in oneofs:
         newnew = []
         for oo in o.args:
             nots = o.args[:]
             nots.remove(oo)
             newnew.extend([[oo] + [Not([n]) for n in nots] + a
                            for a in oneargs])
         oneargs = newnew
     return oneargs, self.norm(And(new_args))
Exemplo n.º 9
0
    def _partial_ground_formula(self, formula, assignment, fluent_dict):
        """
        Inputs:
            formula            The formula to be converted
            assignment        a dictionary mapping each possible variable name to an object

        Returns:
            A formula that has the particular valuation for the variables as given in input. The old formula is *untouched*
        """

        if formula is None:
            return None

        if isinstance(formula, Primitive):
            return Primitive(
                self._predicate_to_fluent(formula.predicate, assignment,
                                          fluent_dict))
        elif isinstance(formula, Forall):

            new_conjuncts = []
            var_names, val_generator = self._create_valuations(formula.params)
            for valuation in val_generator:
                new_assignment = {
                    var_name: val
                    for var_name, val in zip(var_names, valuation)
                }
                for k in assignment:
                    new_assignment[k] = assignment[k]
                new_conjuncts.append(
                    self._partial_ground_formula(formula.args[0],
                                                 new_assignment, fluent_dict))
            return And(new_conjuncts)

        elif isinstance(formula, When):
            return When(
                self._partial_ground_formula(formula.condition, assignment,
                                             fluent_dict),
                self._partial_ground_formula(formula.result, assignment,
                                             fluent_dict))
        else:
            return type(formula)([
                self._partial_ground_formula(arg, assignment, fluent_dict)
                for arg in formula.args
            ])
Exemplo n.º 10
0
    def to_formula(self, node, parameter_map=None):
        """
            Return a formula out of this PDDL_Tree node.
            For now, will assume this makes sense.
        """

        # forall is so weird that we can treat it as an entirely seperate entity
        if "forall" == node.name:
            # treat args differently in this case
            assert len(node.children) in[2, 4],\
                "Forall must have a variable(typed or untyped) and formula that it quantifies"
            i = len(node.children) - 1

            if len(node.children) == 2 and len(node.children[0].children) > 0:
                # adjust this node by changing the structure of the first child
                new_child = PDDL_Tree(PDDL_Tree.EMPTY)
                new_child.add_child(PDDL_Tree(node.children[0].name))

                for c in node.children[0].children:
                    new_child.add_child(c)
                node.children[0] = new_child
                l = PDDL_Utils.read_type(new_child)

            for v, t in l:
                parameter_map[v] = t
            args = [
                self.to_formula(c, parameter_map) for c in node.children[i:]
            ]
            for v, t in l:
                del (parameter_map[v])
            return Forall(l, args)

        i = 0
        args = [self.to_formula(c, parameter_map) for c in node.children[i:]]

        if "and" == node.name:
            return And(args)
        elif "or" == node.name:
            return Or(args)
        elif "oneof" == node.name:
            return Oneof(args)
        elif "not" == node.name:
            return Not(args)
        elif "xor" == node.name:
            return Xor(args)
        elif "nondet" == node.name:
            assert len(node.children) == 1,\
                                       "nondet must only have a single child as a predicate"
            # make p != p2, otherwise might run into issues with mutation in some later step
            return Oneof([args[0], Not(args)])
        elif "unknown" == node.name:
            assert len(node.children) == 1,\
                "unknown must only have a single child as a predicate"
            # make p != p2, otherwise might run into issues with mutation in some later step
            p = Primitive(
                self.to_predicate(node.children[0], map=parameter_map))
            p2 = Primitive(
                self.to_predicate(node.children[0], map=parameter_map))
            return Xor([p, Not([p2])])
        elif "when" == node.name:
            assert len(args) == 2,\
                "When clause must have exactly 2 children"
            return When(args[0], args[1])
        else:
            # it's a predicate
            return Primitive(self.to_predicate(node, map=parameter_map))
Exemplo n.º 11
0
    def norm(self, formula):
        name = formula.name
        if (name == 'Literal') | (name == 'Primitive'):
            return formula

        elif name == 'not':
            if len(formula.args) != 1:
                raise MyError('not with more args')
            if (formula.args[0].name == 'Literal') | (formula.args[0].name
                                                      == 'Primitive'):
                return formula
            elif formula.args[0].name == 'and':
                new_formula = Or([Not([a]) for a in formula.args[0].args])
                return self.norm(new_formula)
            elif formula.args[0].name == 'or':
                new_formula = And([Not([a]) for a in formula.args[0].args])
                return self.norm(new_formula)
            elif formula.args[0].name == 'not':
                new_formula = formula.args[0].args[0]
                return self.norm(new_formula)
            else:
                raise MyError('Formula in NOT:{}'.format(formula.args[0].name))
        elif name == 'and':
            for f in formula.args:
                if (f.name == 'Literal') or (f.name == 'Primitive'):
                    pass
                elif f.name == 'and':
                    rest = formula.args[:]
                    rest.remove(f)
                    rest.extend(f.args)
                    new_formula = And(rest)
                    return self.norm(new_formula)
                elif f.name == 'when':
                    f1 = self.norm(f)
                    rest = formula.args[:]
                    rest.remove(f)
                    rest.append(f1)
                    new_formula = And(rest)
                    return self.norm(new_formula)
                elif f.name == 'or' or f.name == 'not':
                    f1 = self.norm(f)
                    if f1 != f:
                        rest = formula.args[:]
                        rest.remove(f)
                        rest.append(f1)
                        new_formula = And(rest)
                        return self.norm(new_formula)
                else:
                    raise MyError('j')
            return formula

        elif name == 'or':
            if len(formula.args) == 1:
                return self.norm(formula.args[0])
            for arg in formula.args:
                if arg.name == 'and':
                    rest = formula.args[:]
                    rest.remove(arg)
                    new_list = []
                    for f in arg.args:
                        new_new_list = rest[:]
                        new_new_list.append(f)
                        new_list.append(Or(new_new_list))
                    new_formula = And(new_list)
                    return self.norm(new_formula)
                elif arg.name == 'or':
                    rest = formula.args[:]
                    rest.remove(arg)
                    new_list = arg.args[:]
                    new_list.extend(rest)
                    new_formula = Or(new_list)
                    return self.norm(new_formula)
                elif arg.name == 'not':
                    arg2 = self.norm(arg)
                    if arg2 != arg:
                        rest = formula.args[:]
                        rest.remove(arg)
                        rest.append(arg2)
                        new_formula = Or(rest)
                        return self.norm(new_formula)
                elif arg.name == 'when':
                    rest = formula.args[:]
                    rest.remove(arg)
                    arg2 = self.norm(arg)
                    return self.norm(Or(rest + [arg2]))

            return formula
        elif name == 'when':
            # when(a,b) <=> or(not-a, b)
            a = formula.condition
            b = formula.result
            new_a = Not([a])
            new_formula = Or([new_a, b])
            return self.norm(new_formula)
        else:
            raise MyError('not enough')
Exemplo n.º 12
0
    def to_formula(self, node, parameter_map=None):
        """
            Return a formula out of this PDDL_Tree node.
            For now, will assume this makes sense.
        """

        # forall is so weird that we can treat it as an entirely seperate entity
        if "forall" == node.name:
            # treat args differently in this case
            assert len(node.children) in[2, 4],\
                "Forall must have a variable(typed or untyped) and formula that it quantifies"
            i = len(node.children) - 1

            if len(node.children) == 2 and len(node.children[0].children) > 0:
                # adjust this node by changing the structure of the first child
                new_child = PDDL_Tree(PDDL_Tree.EMPTY)
                new_child.add_child(PDDL_Tree(node.children[0].name))

                for c in node.children[0].children:
                    new_child.add_child(c)
                node.children[0] = new_child
                l = PDDL_Utils.read_type(new_child)
            else:
                l = [(node.children[0].name, node.children[2].name)]

            for v, t in l:
                parameter_map[v] = t
            args = [
                self.to_formula(c, parameter_map) for c in node.children[i:]
            ]
            for v, t in l:
                del (parameter_map[v])
            return Forall(l, args)

        i = 0
        args = [self.to_formula(c, parameter_map) for c in node.children[i:]]

        def handle_modality(node, pref_len, modality):

            assert 1 <= len(
                node.children) <= 2, "Error: Found %d children." % len(
                    node.children)

            #print "%s / %s / %s" % (str(node), str(pref_len), str(modality))

            ag = node.name[pref_len:-1]

            if len(node.children) == 1:
                pred = self.to_formula(node.children[0], parameter_map)
            else:
                pred = self.to_formula(node.children[1], parameter_map)
                pred.negated_rml = True

            assert not isinstance(
                pred, Not
            ), "Error: Cannot nest lack of belief with (not ...): %s" % pred.dump(
            )
            assert isinstance(
                pred, Primitive
            ), "Error: Type should have been Primitive, but was %s" % str(
                type(pred))

            pred.agent_list = "%s%s %s" % (modality, ag, pred.agent_list)

            return pred

        if "and" == node.name:
            return And(args)
        elif "or" == node.name:
            return Or(args)
        elif "oneof" == node.name:
            return Oneof(args)
        elif "not" == node.name:
            return Not(args)
        elif "xor" == node.name:
            return Xor(args)
        elif "nondet" == node.name:
            assert len(node.children) == 1,\
                                       "nondet must only have a single child as a predicate"
            # make p != p2, otherwise might run into issues with mutation in some later step
            return Oneof([args[0], Not(args)])
        elif "unknown" == node.name:
            assert len(node.children) == 1,\
                "unknown must only have a single child as a predicate"
            # make p != p2, otherwise might run into issues with mutation in some later step
            p = Primitive(
                self.to_predicate(node.children[0], map=parameter_map))
            p2 = Primitive(
                self.to_predicate(node.children[0], map=parameter_map))
            return Xor([p, Not([p2])])
        elif "when" == node.name:
            assert len(args) == 2,\
                "When clause must have exactly 2 children"
            return When(args[0], args[1])

        elif "P{" == node.name[:2]:
            return handle_modality(node, 2, 'P')

        elif "!P{" == node.name[:3]:
            return handle_modality(node, 3, '!P')

        elif "B{" == node.name[:2]:
            return handle_modality(node, 2, 'B')

        elif "!B{" == node.name[:3]:
            return handle_modality(node, 3, '!B')

        elif "!" == node.name[0]:
            node.name = node.name[1:]
            pred = Primitive(self.to_predicate(node, map=parameter_map))
            pred.negated_rml = True
            return pred
        else:
            # it's a predicate
            return Primitive(self.to_predicate(node, map=parameter_map))
Exemplo n.º 13
0
    def _parse_problem(self, f_problem):
        """
        Extract information from the problem file.

        The following will be extracted:
            * problem name
            * objects
            * initial state
            * goal state
            * type_to_obj
            * obj_to_type
        """

        parse_tree = PDDL_Tree.create(f_problem)

        assert "problem" in parse_tree, "Problem must have a name"
        self.problem_name = parse_tree["problem"].named_children()[0]

        # objects must be parsed first
        if ":objects" in parse_tree:
            object_list = PDDL_Utils.read_type(parse_tree[":objects"])
            self._add_objects(object_list)

        #TODO this may not be valid with a non-flat type hierchy
        obj_map = {obj: list(self.obj_to_type[obj])[0] for obj in self.objects}

        # the goal can be expressed in either a formula form, or a direct form
        if len(parse_tree[":goal"].children
               ) == 1 and parse_tree[":goal"].children[0].name == "and":
            self.goal = And([
                self.to_formula(c, obj_map)
                for c in parse_tree[":goal"].children[0].children
            ])
        else:
            self.goal = And([
                self.to_formula(c, obj_map)
                for c in parse_tree[":goal"].children
            ])

        # it is critical that the formula here be checked against the objects
        if len(parse_tree[":init"].children) == 1 and \
                parse_tree[":init"].children[0].name == "and":
            self.init = self.to_formula(parse_tree[":init"].children[0],
                                        obj_map)
        else:
            # initial condition is one big AND
            self.init = And([
                self.to_formula(c, obj_map)
                for c in parse_tree[":init"].children
            ])

        # Parse the multiagent stuff
        self.task = parse_tree[":task"].children[0].name
        self.depth = int(parse_tree[":depth"].children[0].name)
        self.projection = [a.name for a in parse_tree[":projection"].children]
        self.init_type = parse_tree[":init-type"].children[0].name
        self.plan = []
        if ':plan' in parse_tree:
            self.plan = map(
                lambda x: '_'.join(
                    map(str, [x.name] + [y.name for y in x.children])),
                parse_tree[":plan"].children)