def test_set_tag_when_in_job_sets_tag(self): self.foundations_job.job_id = self.job_id set_tag(self.random_tag, self.random_tag_value) self.message_router.push_message.assert_called_with( "job_tag", { "job_id": self.job_id, "key": self.random_tag, "value": self.random_tag_value, }, )
def _set_tags(klass, job_name, tags): from foundations_contrib.global_state import current_foundations_job from foundations import set_tag foundations_job = current_foundations_job() foundations_job.job_id = job_name if tags is not None: for key, value in tags.items(): set_tag(key, value) foundations_job.job_id = None
def _set_tags(klass, job_name, tags): from foundations_contrib.global_state import current_foundations_context from foundations import set_tag pipeline_context = current_foundations_context().pipeline_context() pipeline_context.file_name = job_name if tags is not None: for key, value in tags.items(): set_tag(key, value) pipeline_context.file_name = None
import foundations from foundations import set_tag from foundations_contrib.global_state import current_foundations_job from model import * set_tag('model', 'cnn') def print_words(): print(f'Job \'{current_foundations_job().job_id}\' deployed') print('Hello World!') print_words() addition_result = add(82, 2) set_tag('Loss', addition_result) subtraction_result = subtract(44, 2) foundations.log_metric('Accuracy', subtraction_result)
import foundations foundations.log_metric('key', 'value') foundations.set_tag('key', value='value') foundations.log_param('param', 'param_value') print('Hello World!')
import os import foundations from foundations_contrib.global_state import current_foundations_context, message_router from foundations_events.producers.jobs import RunJob foundations.set_project_name('default') job_id = os.environ['ACCEPTANCE_TEST_JOB_ID'] pipeline_context = current_foundations_context().pipeline_context() pipeline_context.file_name = job_id RunJob(message_router, pipeline_context).push_message() foundations.set_tag('model type', 'simple mlp') foundations.set_tag('data set', 'out of time') foundations.set_tag('what I was doing,', 'drinking tea') print('Hello World!')
def set_tensorboard_logdir(path): import atexit import foundations atexit.register(_create_tensorboard_logdir(path)) foundations.set_tag('tf', 'tf')
import foundations foundations.set_tag("Str", "") foundations.set_tag("Int", "") foundations.set_tag("Float", "") foundations.set_tag("None", "")
import foundations foundations.log_metric('hello', 20) foundations.set_tag('this_tag', value='this_value') foundations.set_tag('that_tag', value='that_value')
from utils import parse_and_override_params import foundations # Fix random seed torch.manual_seed(0) np.random.seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False params = foundations.load_parameters() data_dict = parse_and_override_params(params) # Set job tags to easily spot data in use foundations.set_tag( f'{data_dict[params["train_data"]]}: {params["train_data"]}') # foundations.set_tag(f'big {params["train_data"]}') print('Creating datasets') # Get dataloaders train_dl, val_base_dl, val_augment_dl, display_dl_iter = create_dataloaders( params) print('Creating loss function') # Loss function criterion = nn.CrossEntropyLoss() print('Creating model') # Create model, freeze layers and change last layer model = create_model(bool(params['use_hidden_layer']), params['dropout']) _ = print_model_params(model)