Exemplo n.º 1
0
            def __init__(self, data):
                # User defined arguments
                fixed_random_seed = 0xbeef
                train_data_sampler = CompleteData()
                missing_value_handler = CompleteCaseAnalysis()
                numeric_attribute_scaler = NoScaler()
                learners = [
                    NonTunedLogisticRegression(),
                    NonTunedDecisionTree()
                ]
                pre_processors = [NoPreProcessing()]
                post_processors = [NoPostProcessing()]

                # Fixed arguments for dataset
                test_set_ratio = 0.2
                validation_set_ratio = 0.1
                label_name = 'credit'
                positive_label = 1
                numeric_attribute_names = [
                    'month', 'credit_amount', 'residence_since', 'age',
                    'number_of_credits', 'people_liable_for'
                ]
                categorical_attribute_names = [
                    'credit_history', 'savings', 'employment'
                ]
                attributes_to_drop_names = [
                    'personal_status', 'status', 'purpose',
                    'investment_as_income_percentage', 'other_debtors',
                    'property', 'installment_plans', 'housing', 'skill_level',
                    'telephone', 'foreign_worker'
                ]
                protected_attribute_names = ['sex']
                privileged_classes = [[1.0]]
                privileged_groups = [{'sex': 1.0}]
                unprivileged_groups = [{'sex': 0.0}]
                dataset_metadata = {
                    'label_maps': [{
                        1.0: 1,
                        0.0: 0
                    }],
                    'protected_attribute_maps': [{
                        1.0: 'male',
                        0.0: 'female'
                    }]
                }
                dataset_name = 'test_dataset'

                # Constructor call
                super().__init__(
                    fixed_random_seed, test_set_ratio, validation_set_ratio,
                    label_name, positive_label, numeric_attribute_names,
                    categorical_attribute_names, attributes_to_drop_names,
                    train_data_sampler, missing_value_handler,
                    numeric_attribute_scaler, learners, pre_processors,
                    post_processors, protected_attribute_names,
                    privileged_classes, privileged_groups, unprivileged_groups,
                    dataset_metadata, dataset_name)
Exemplo n.º 2
0
 def test_GiveMeSomeCreditExperiment(self):
     self.experiment = GiveMeSomeCreditExperiment(
         fixed_random_seed=0xabcd,
         train_data_sampler=CompleteData(),
         missing_value_handler=CompleteCaseAnalysis(),
         numeric_attribute_scaler=NamedStandardScaler(),
         learners=[NonTunedLogisticRegression(),
                   NonTunedDecisionTree()],
         pre_processors=[NoPreProcessing()],
         post_processors=[NoPostProcessing()])
     self.experiment.run()
Exemplo n.º 3
0
from fp.dataset_experiments import GermanCreditDatasetSexExperiment
from fp.scalers import NamedStandardScaler, NamedMinMaxScaler
from fp.learners import NonTunedLogisticRegression, LogisticRegression, DecisionTree, NonTunedLogisticRegression, NonTunedDecisionTree
from fp.post_processors import NoPostProcessing, RejectOptionPostProcessing, EqualOddsPostProcessing, CalibratedEqualOddsPostProcessing
from fp.pre_processors import NoPreProcessing, DIRemover, Reweighing

import numpy as np
import matplotlib.pyplot as plt

#creating list of parameters that we will alter to observe variations
seeds = [
    0xbeef, 0xcafe, 0xdead, 0xdeadcafe, 0xdeadbeef, 0xbeefcafe, 0xcafebeef, 50,
    583, 5278, 100000, 0xefac, 0xfeeb, 0xdaed, 0xefacdaed, 0xfeebdead
]
learners = [
    NonTunedLogisticRegression(),
    LogisticRegression(),
    NonTunedDecisionTree(),
    DecisionTree()
]
processors = [(NoPreProcessing(), NoPostProcessing()),
              (DIRemover(1.0), NoPostProcessing()),
              (DIRemover(0.5), NoPostProcessing()),
              (Reweighing(), NoPostProcessing()),
              (NoPreProcessing(), RejectOptionPostProcessing()),
              (NoPreProcessing(), CalibratedEqualOddsPostProcessing())]


def calculate_metrics(seed, learner, pre_processor, post_processor):
    '''
    Experiment function to run the experiments
Exemplo n.º 4
0
 def test_NonTunedLogisticRegression(self):
     self.learner = NonTunedLogisticRegression()
     result = self.learner.fit_model(self.annotated_data, self.seed)
     self.assertEqual(self.learner.name(), 'LogisticRegression-notuning')
     self.assertEqual(type(result), type(SGDClassifier()))