Exemplo n.º 1
0
def gaussian_potential(center, width, amplitude):
    """A Gaussian potential

    Arguments:
        center    center of Gaussian (scalar or vector)
        width     width of Gaussian  (scalar or vector)
        amplitude amplitude of Gaussian, (negative for repulsive)
    """

    center = np.atleast_1d(center)
    ndim = len(center)
    width = value_to_vector(width, ndim)
    amplitude = value_to_vector(amplitude, ndim)

    def potential(*args):
        U = np.ones_like(args[0])

        for i, arg in enumerate(args):
            U *= np.exp(-np.square((arg - center[i]) / width[i]))

        return -amplitude * U

    return potential
Exemplo n.º 2
0
def harmonic_potential(center, k):
    """A harmonic potential

    Arguments:
        center    center of harmonic potential (scalar or vector)
        k         spring constant of harmonic potential (scalar or vector)
    """

    center = np.atleast_1d(center)
    ndim = len(center)
    k = value_to_vector(k, ndim)

    def potential(*args):
        U = np.zeros_like(args[0])

        for i, arg in enumerate(args):
            U += 0.5 * k[i] * (arg - center[i])**2

        return U

    return potential
Exemplo n.º 3
0
def gaussian_pdf(center, width):
    """A Gaussian probability distribution function

    Arguments:
        center    center of Gaussian (scalar or vector)
        width     width of Gaussian (scalar or vector)
    """

    center = np.atleast_1d(center)
    ndim = len(center)
    width = value_to_vector(width, ndim)

    def pdf(*args):
        values = np.ones_like(args[0])

        for i, arg in enumerate(args):
            values *= np.exp(-np.square((arg - center[i])/width[i]))

        return values/np.sum(values)

    return pdf
Exemplo n.º 4
0
    def __init__(self,
                 *,
                 temperature,
                 drag,
                 extent,
                 resolution,
                 potential=None,
                 force=None,
                 boundary=fplanck.boundary.reflecting):
        """
        Solve the Fokker-Planck equation

        Arguments:
            temperature     temperature of the surrounding bath (scalar or vector)
            drag            drag coefficient (scalar or vector)
            extent          extent (size) of the grid (vector)
            resolution      spatial resolution of the grid (scalar or vector)
            potential       external potential function, U(ndim -> scalar)
            force           external force function, F(ndim -> ndim)
            boundary        type of boundary condition (scalar or vector, default: reflecting)
        """

        self.extent = np.atleast_1d(extent)
        self.ndim = self.extent.size

        self.temperature = value_to_vector(temperature, self.ndim)
        self.drag = value_to_vector(drag, self.ndim)
        self.resolution = value_to_vector(resolution, self.ndim)

        self.potential = potential
        self.force = force
        self.boundary = value_to_vector(boundary, self.ndim, dtype=object)

        self.diffusion = constants.k * self.temperature / self.drag
        self.mobility = 1 / self.drag
        self.beta = 1 / (constants.k * self.temperature)

        self.Ngrid = np.ceil(self.extent / resolution).astype(int)
        axes = [
            np.arange(self.Ngrid[i]) * self.resolution[i]
            for i in range(self.ndim)
        ]
        for axis in axes:
            axis -= np.average(axis)
        self.axes = axes
        self.grid = np.array(np.meshgrid(*axes, indexing='ij'))

        self.Rt = np.zeros_like(self.grid)
        self.Lt = np.zeros_like(self.grid)
        self.potential_values = np.zeros_like(self.grid[0])
        self.force_values = np.zeros_like(self.grid)

        if self.potential is not None:
            U = self.potential(*self.grid)
            self.potential_values += U
            self.force_values -= np.gradient(U, *self.resolution)

            for i in range(self.ndim):
                dU = np.roll(U, -1, axis=i) - U
                self.Rt[i] += self.diffusion[i] / self.resolution[
                    i]**2 * np.exp(-self.beta[i] * dU / 2)

                dU = np.roll(U, 1, axis=i) - U
                self.Lt[i] += self.diffusion[i] / self.resolution[
                    i]**2 * np.exp(-self.beta[i] * dU / 2)

        if self.force is not None:
            F = np.atleast_2d(self.force(*self.grid))
            self.force_values += F

            for i in range(self.ndim):
                dU = -(np.roll(F[i], -1, axis=i) +
                       F[i]) / 2 * self.resolution[i]
                self.Rt[i] += self.diffusion[i] / self.resolution[
                    i]**2 * np.exp(-self.beta[i] * dU / 2)

                dU = (np.roll(F[i], 1, axis=i) + F[i]) / 2 * self.resolution[i]
                self.Lt[i] += self.diffusion[i] / self.resolution[
                    i]**2 * np.exp(-self.beta[i] * dU / 2)

        if self.force is None and self.potential is None:
            for i in range(self.ndim):
                self.Rt[i] = self.diffusion[i] / self.resolution[i]**2
                self.Lt[i] = self.diffusion[i] / self.resolution[i]**2

        for i in range(self.ndim):
            if self.boundary[i] == fplanck.boundary.reflecting:
                idx = slice_idx(i, self.ndim, -1)
                self.Rt[i][idx] = 0

                idx = slice_idx(i, self.ndim, 0)
                self.Lt[i][idx] = 0
            elif self.boundary[i] == fplanck.boundary.periodic:
                idx = slice_idx(i, self.ndim, -1)
                dU = -self.force_values[i][idx] * self.resolution[i]
                self.Rt[i][idx] = self.diffusion[i] / self.resolution[
                    i]**2 * np.exp(-self.beta[i] * dU / 2)

                idx = slice_idx(i, self.ndim, 0)
                dU = self.force_values[i][idx] * self.resolution[i]
                self.Lt[i][idx] = self.diffusion[i] / self.resolution[
                    i]**2 * np.exp(-self.beta[i] * dU / 2)
            else:
                raise ValueError(
                    f"'{self.boundary[i]}' is not a valid a boundary condition"
                )

        self._build_matrix()