Exemplo n.º 1
0
    def test_apply_spinful_fermionop(self):
        """
        Make sure the spin-orbital reordering is working by comparing
        apply operation
        """
        wfn = Wavefunction([[2, 0, 2]])
        wfn.set_wfn(strategy='random')
        wfn.normalize()
        cirq_wf = to_cirq(wfn).reshape((-1, 1))

        op_to_apply = FermionOperator()
        test_state = copy.deepcopy(wfn)
        test_state.set_wfn('zero')
        for p, q, r, s in product(range(2), repeat=4):
            op = FermionOperator(
                ((2 * p, 1), (2 * q + 1, 1), (2 * r + 1, 0), (2 * s, 0)),
                coefficient=numpy.random.randn())
            op_to_apply += op + hermitian_conjugated(op)
            test_state += wfn.apply(op + hermitian_conjugated(op))

        opmat = get_sparse_operator(op_to_apply, n_qubits=4).toarray()
        new_state_cirq = opmat @ cirq_wf

        # this part is because we need to pass a normalized wavefunction
        norm_constant = new_state_cirq.conj().T @ new_state_cirq
        new_state_cirq /= numpy.sqrt(norm_constant)
        new_state_wfn = from_cirq(new_state_cirq.flatten(), thresh=1.0E-12)
        new_state_wfn.scale(numpy.sqrt(norm_constant))

        self.assertTrue(
            numpy.allclose(test_state.get_coeff((2, 0)),
                           new_state_wfn.get_coeff((2, 0))))
Exemplo n.º 2
0
    def test_lih_dipole(self):
        """Calculate the LiH dipole
        """
        norb = 6
        nalpha = 2
        nbeta = 2
        nele = nalpha + nbeta
        au2debye = 2.5417464157449032

        dip_ref, dip_mat, lih_ground = build_lih_data.build_lih_data('dipole')

        wfn = Wavefunction([[nele, nalpha - nbeta, norb]])
        wfn.set_wfn(strategy='from_data',
                    raw_data={(nele, nalpha - nbeta): lih_ground})

        hwfn_x = wfn._apply_array(tuple([dip_mat[0]]), e_0=0. + 0.j)
        hwfn_y = wfn._apply_array(tuple([dip_mat[1]]), e_0=0. + 0.j)
        hwfn_z = wfn._apply_array(tuple([dip_mat[2]]), e_0=0. + 0.j)
        calc_dip = numpy.array([fqe.vdot(wfn, hwfn_x).real, \
                              fqe.vdot(wfn, hwfn_y).real, \
                              fqe.vdot(wfn, hwfn_z).real])*au2debye
        for card in range(3):
            with self.subTest(dip=card):
                err = abs(calc_dip[card] - dip_ref[card])
                self.assertTrue(err < 1.e-5)
Exemplo n.º 3
0
    def test_evolve_spinful_fermionop(self):
        """
        Make sure the spin-orbital reordering is working by comparing
        time evolution
        """
        wfn = Wavefunction([[2, 0, 2]])
        wfn.set_wfn(strategy='random')
        wfn.normalize()
        cirq_wf = to_cirq(wfn).reshape((-1, 1))

        op_to_apply = FermionOperator()
        for p, q, r, s in product(range(2), repeat=4):
            op = FermionOperator(
                ((2 * p, 1), (2 * q + 1, 1), (2 * r + 1, 0), (2 * s, 0)),
                coefficient=numpy.random.randn())
            op_to_apply += op + hermitian_conjugated(op)

        opmat = get_sparse_operator(op_to_apply, n_qubits=4).toarray()
        dt = 0.765
        new_state_cirq = scipy.linalg.expm(-1j * dt * opmat) @ cirq_wf
        new_state_wfn = from_cirq(new_state_cirq.flatten(), thresh=1.0E-12)
        test_state = wfn.time_evolve(dt, op_to_apply)
        self.assertTrue(
            numpy.allclose(test_state.get_coeff((2, 0)),
                           new_state_wfn.get_coeff((2, 0))))
Exemplo n.º 4
0
 def test_general_exceptions(self):
     """Test general method exceptions
     """
     test1 = Wavefunction(param=[[2, 0, 4]])
     test2 = Wavefunction(param=[[4, -4, 8]])
     test1.set_wfn(strategy='ones')
     test2.set_wfn(strategy='ones')
     self.assertRaises(ValueError, test1.ax_plus_y, 1.0, test2)
     self.assertRaises(ValueError, test1.__add__, test2)
     self.assertRaises(ValueError, test1.__sub__, test2)
     self.assertRaises(ValueError, test1.set_wfn, strategy='from_data')
Exemplo n.º 5
0
    def test_apply_diagonal(self):
        wfn = Wavefunction([[2, 0, 2]])
        wfn.set_wfn(strategy='random')

        data = numpy.random.rand(2)
        hamil = diagonal_hamiltonian.Diagonal(data)
        out1 = wfn._apply_diagonal(hamil)

        fac = 0.5
        hamil = diagonal_hamiltonian.Diagonal(data, e_0=fac)
        out2 = wfn._apply_diagonal(hamil)
        out2.ax_plus_y(-fac, wfn)
        self.assertTrue((out1 - out2).norm() < 1.0e-8)
Exemplo n.º 6
0
    def test_apply_nbody(self):
        wfn = Wavefunction([[2, 0, 2]])
        wfn.set_wfn(strategy='random')

        fac = 3.14
        fop = FermionOperator('1^ 1', fac)
        hamil = sparse_hamiltonian.SparseHamiltonian(fop)
        out1 = wfn._apply_few_nbody(hamil)

        fop = FermionOperator('1 1^', fac)
        hamil = sparse_hamiltonian.SparseHamiltonian(fop)
        out2 = wfn._apply_few_nbody(hamil)
        out2.scale(-1.0)
        out2.ax_plus_y(fac, wfn)
        self.assertTrue((out1 - out2).norm() < 1.0e-8)
Exemplo n.º 7
0
    def test_lih_energy(self):
        """Checking total energy with LiH
        """
        eref = -8.877719570384043
        norb = 6
        nalpha = 2
        nbeta = 2
        nele = nalpha + nbeta
        h1e, h2e, lih_ground = build_lih_data.build_lih_data('energy')

        elec_hamil = general_hamiltonian.General((h1e, h2e))
        wfn = Wavefunction([[nele, nalpha - nbeta, norb]])
        wfn.set_wfn(strategy='from_data',
                    raw_data={(nele, nalpha - nbeta): lih_ground})

        ecalc = wfn.expectationValue(elec_hamil)
        self.assertAlmostEqual(eref, ecalc, places=8)
Exemplo n.º 8
0
    def test_hartree_fock_init(self):
        h1e, h2e, _ = build_lih_data('energy')
        elec_hamil = get_restricted_hamiltonian((h1e, h2e))
        norb = 6
        nalpha = 2
        nbeta = 2
        wfn = Wavefunction([[nalpha + nbeta, nalpha - nbeta, norb]])
        wfn.print_wfn()
        wfn.set_wfn(strategy='hartree-fock')
        wfn.print_wfn()
        self.assertEqual(wfn.expectationValue(elec_hamil), -8.857341498221992)
        hf_wf = numpy.zeros((int(binom(norb, 2)), int(binom(norb, 2))))
        hf_wf[0, 0] = 1.
        self.assertTrue(numpy.allclose(wfn.get_coeff((4, 0)), hf_wf))

        wfn = Wavefunction([[nalpha + nbeta, nalpha - nbeta, norb],
                            [nalpha + nbeta, 2, norb]])
        self.assertRaises(ValueError, wfn.set_wfn, strategy='hartree-fock')
Exemplo n.º 9
0
 def test_rdm(self):
     """Check that the rdms will properly return the energy
     """
     wfn = Wavefunction(param=[[4, 0, 3]])
     work, energy = build_wfn.restricted_wfn_energy()
     wfn.set_wfn(strategy='from_data', raw_data={(4, 0): work})
     rdm1 = wfn.rdm('i^ j')
     rdm2 = wfn.rdm('i^ j^ k l')
     rdm3 = wfn.rdm('i^ j^ k^ l m n')
     rdm4 = wfn.rdm('i^ j^ k^ l^ m n o p')
     h1e, h2e, h3e, h4e = build_hamiltonian.build_restricted(3, full=False)
     expval = 0. + 0.j
     axes = [0, 1]
     expval += numpy.tensordot(h1e, rdm1, axes=(axes, axes))
     axes = [0, 1, 2, 3]
     expval += numpy.tensordot(h2e, rdm2, axes=(axes, axes))
     axes = [0, 1, 2, 3, 4, 5]
     expval += numpy.tensordot(h3e, rdm3, axes=(axes, axes))
     axes = [0, 1, 2, 3, 4, 5, 6, 7]
     expval += numpy.tensordot(h4e, rdm4, axes=(axes, axes))
     self.assertAlmostEqual(expval, energy)
Exemplo n.º 10
0
    def test_wick(self):
        """Check that wick performs the proper restructuring of the
        density matrix given a string of indexes.
        """
        norb = 4
        nele = 4
        s_z = 0
        wfn = Wavefunction([[nele, s_z, norb]])
        numpy.random.seed(seed=1)
        wfn.set_wfn(strategy='random')
        wfn.normalize()
        rdms = wfn._compute_rdm(4)
        out1 = wick.wick('k j^', list(rdms), True)
        two = numpy.eye(norb, dtype=out1.dtype) * 2.0
        self.assertRaises(ValueError, wick.wick, 'k0 j', list(rdms))
        self.assertTrue(numpy.allclose(two - out1.T, rdms[0]))

        self.assertRaises(ValueError, wick.wick, 'k^ l i^ j', list(rdms), True)
        out2 = wick.wick('k l i^ j^', list(rdms), True)

        h_1 = numpy.zeros_like(out1)
        for i in range(norb):
            h_1[:, :] += out2[:, i, :, i] / (norb * 2 - nele - 1)
        self.assertAlmostEqual(numpy.std(out1 + h_1), 0.)

        out2a = wick.wick('k l^ i^ j', list(rdms), True)
        self.assertAlmostEqual(out2a[2, 3, 0, 1], -rdms[1][0, 3, 2, 1])

        out3 = wick.wick('k l m i^ j^ n^', list(rdms), True)
        h_2 = numpy.zeros_like(out2)
        for i in range(norb):
            h_2[:, :, :, :] += out3[:, i, :, :, i, :] / (norb * 2 - nele - 2)
        self.assertAlmostEqual(numpy.std(out2 - h_2), 0.)

        out4 = wick.wick('k l m x i^ j^ n^ y^', list(rdms), True)
        h_3 = numpy.zeros_like(out3)
        for i in range(norb):
            h_3[:, :, :, :, :, :] += out4[:, i, :, :, :, i, :, :] / (norb * 2 -
                                                                     nele - 3)
        self.assertAlmostEqual(numpy.std(out3 + h_3), 0.)
Exemplo n.º 11
0
    def test_lih_ops(self):
        """Check the value of the operators on LiH
        """
        norb = 6
        nalpha = 2
        nbeta = 2
        nele = nalpha + nbeta

        _, _, lih_ground = build_lih_data.build_lih_data('energy')

        wfn = Wavefunction([[nele, nalpha - nbeta, norb]])
        wfn.set_wfn(strategy='from_data',
                    raw_data={(nele, nalpha - nbeta): lih_ground})

        operator = S2Operator()
        self.assertAlmostEqual(wfn.expectationValue(operator), 0. + 0.j)
        operator = SzOperator()
        self.assertAlmostEqual(wfn.expectationValue(operator), 0. + 0.j)
        operator = TimeReversalOp()
        self.assertAlmostEqual(wfn.expectationValue(operator), 1. + 0.j)
        operator = NumberOperator()
        self.assertAlmostEqual(wfn.expectationValue(operator), 4. + 0.j)
        self.assertAlmostEqual(wfn.expectationValue(operator, wfn), 4. + 0.j)
Exemplo n.º 12
0
    def test_apply_number(self):
        norb = 4
        test = numpy.random.rand(norb, norb)
        diag = numpy.random.rand(norb * 2)
        diag2 = copy.deepcopy(diag)
        e_0 = 0
        for i in range(norb):
            e_0 += diag[i + norb]
            diag2[i + norb] = -diag[i + norb]
        hamil = diagonal_hamiltonian.Diagonal(diag2, e_0=e_0)
        hamil._conserve_number = False
        wfn = Wavefunction([[4, 2, norb]], broken=['number'])
        wfn.set_wfn(strategy='from_data', raw_data={(4, 2): test})
        out1 = wfn.apply(hamil)

        hamil = diagonal_hamiltonian.Diagonal(diag)
        wfn = Wavefunction([[4, 2, norb]])
        wfn.set_wfn(strategy='from_data', raw_data={(4, 2): test})
        out2 = wfn.apply(hamil)

        self.assertTrue(
            numpy.allclose(out1._civec[(4, 2)].coeff,
                           out2._civec[(4, 2)].coeff))
Exemplo n.º 13
0
 def test_general_functions(self):
     """Test general wavefunction members
     """
     test = Wavefunction(param=[[2, 0, 4]])
     test.set_wfn(strategy='ones')
     self.assertEqual(1. + 0.j, test[(4, 8)])
     test[(4, 8)] = 3.14 + 0.00159j
     self.assertEqual(3.14 + 0.00159j, test[(4, 8)])
     self.assertEqual(3.14 + 0.00159j, test.max_element())
     self.assertTrue(test.conserve_spin())
     test1 = Wavefunction(param=[[2, 0, 4]])
     test2 = Wavefunction(param=[[2, 0, 4]])
     test1.set_wfn(strategy='ones')
     test2.set_wfn(strategy='ones')
     work = test1 + test2
     ref = 2.0 * numpy.ones((4, 4), dtype=numpy.complex128)
     self.assertTrue(numpy.allclose(ref, work._civec[(2, 0)].coeff))
     work = test1 - test2
     ref = numpy.zeros((4, 4), dtype=numpy.complex128)
     self.assertTrue(numpy.allclose(ref, work._civec[(2, 0)].coeff))
Exemplo n.º 14
0
 def test_set_wfn_random_with_multiple_sectors_is_normalized(self):
     wfn = Wavefunction([[2, 0, 4], [2, -2, 4]], broken=None)
     wfn.set_wfn(strategy="random")
     self.assertAlmostEqual(wfn.norm(), 1.0)