Exemplo n.º 1
0
 def test_linearity_mul(self, n, window, mode, const):
     np.random.seed(42)
     a0 = np.random.randn(10, 20)
     a1 = const * a0
     diff0 = fdiff(a0, n, window=window, mode=mode)
     diff1 = fdiff(a1, n, window=window, mode=mode)
     assert_allclose(const * diff0, diff1)
Exemplo n.º 2
0
 def test_linearity_add(self, n, window, mode):
     np.random.seed(42)
     a0 = np.random.randn(10, 20)
     a1 = np.random.randn(10, 20)
     a2 = a0 + a1
     diff0 = fdiff(a0, n, window=window, mode=mode)
     diff1 = fdiff(a1, n, window=window, mode=mode)
     diff2 = fdiff(a2, n, window=window, mode=mode)
     assert_allclose(diff0 + diff1, diff2)
Exemplo n.º 3
0
    def test_mode(self, n, window):
        np.random.seed(42)
        a = np.random.randn(10, 20)

        out_f = fdiff(a, n, axis=0, window=window, mode="full")
        out_v = fdiff(a, n, axis=0, window=window, mode="valid")
        assert_array_equal(out_f[window - 1:, :], out_v)

        out_f = fdiff(a, n, axis=1, window=window, mode="full")
        out_v = fdiff(a, n, axis=1, window=window, mode="valid")
        assert_array_equal(out_f[:, window - 1:], out_v)
Exemplo n.º 4
0
 def test_integer_n(self, n, ndim):
     """
     fdiff with integer n is equal to numpy.diff
     """
     np.random.seed(42)
     a = np.random.randn(*([100] * ndim))
     for axis in range(ndim):
         out = np.diff(a, n=int(n), axis=axis)
         assert_array_equal(fdiff(a, n=n, axis=axis), out)
Exemplo n.º 5
0
    def test_one(self, n, window, n_blanks_1, n_blanks_2, n_features):
        a = np.concatenate((
            np.zeros((window + n_blanks_1, n_features)),
            np.ones((1, n_features)),
            np.zeros((window + n_blanks_2, n_features)),
        ))

        coef = fdiff_coef(n, window)
        diff = fdiff(a, n=n, window=window, axis=0)

        for i in range(n_features):
            assert_array_equal(diff[window + n_blanks_1:, i][:window], coef)
            assert_equal(diff[:window + n_blanks_1], 0)
            assert_equal(diff[window + n_blanks_1 + window:], 0)
Exemplo n.º 6
0
    def test_append(self, n, window, mode):
        a = np.random.randn(10, 20)

        append = np.random.randn(5, 20)
        cat = np.concatenate((a, append), axis=0)
        out = fdiff(cat, n, axis=0, window=window, mode=mode)
        result = fdiff(a, n, axis=0, window=window, append=append, mode=mode)
        assert_array_equal(result, out)

        append = np.random.randn(10, 5)
        cat = np.concatenate((a, append), axis=1)
        out = fdiff(cat, n, axis=1, window=window, mode=mode)
        result = fdiff(a, n, axis=1, window=window, append=append, mode=mode)
        assert_array_equal(result, out)

        cat = np.concatenate((a, np.zeros((1, 20))), axis=0)
        out = fdiff(cat, n, axis=0, window=window, mode=mode)
        result = fdiff(a, n, axis=0, window=window, append=0, mode=mode)
        assert_array_equal(result, out)

        cat = np.concatenate((a, np.zeros((10, 1))), axis=1)
        out = fdiff(cat, n, axis=1, window=window, mode=mode)
        result = fdiff(a, n, axis=1, window=window, append=0, mode=mode)
        assert_array_equal(result, out)
Exemplo n.º 7
0
 def _add_diff(self, _df, _diff_d, _name, _add=True):
     """ 为 数据列 添加 差分数据列
     :param _add:
     :param _df: 原数据 DataFrame
     :param _d_list: 差分阶数 [0.3, 0.5, 0.7]
     :param _name: 需要添加 差分值 的数据列 名称
     :param _agg_dict:
     :param _agg_type:
     :param _add:
     :return: """
     if _add:
         if len(_df) >= 12:  # 数据行数大于等于12才进行差分操作
             _diff_ar = fdiff(_df[_name],
                              n=_diff_d,
                              window=10,
                              mode="valid")  # 列差分,不使用未来数据
             _paddings = len(_df) - len(_diff_ar)  # 差分后数据长度变短,需要在前面填充多少数据
             _diff = np.nan_to_num(np.concatenate((np.full(_paddings,
                                                           0), _diff_ar)),
                                   nan=0)  # 将所有nan替换为0
             _df[_name + f'_diff_{_diff_d}'] = _diff  # 将差分数据记录到 DataFrame
         else:
             _df[_name + f'_diff_{_diff_d}'] = np.nan  # 数据行数不足12的填充为空数据
Exemplo n.º 8
0
 def test_transform(self, d, window, mode):
     np.random.seed(42)
     X = np.random.randn(100, 200)
     fracdiff = Fracdiff(d=d, window=window, mode=mode)
     out = fdiff(X, n=d, axis=0, window=window, mode=mode)
     assert_array_equal(fracdiff.fit_transform(X), out)
Exemplo n.º 9
0
    def test_axis(self, n):
        np.random.seed(42)
        a = np.random.randn(10, 20, 30, 40)

        out1 = np.swapaxes(fdiff(np.swapaxes(a, 0, 1), n, axis=0), 0, 1)
        out2 = np.swapaxes(fdiff(np.swapaxes(a, 0, 2), n, axis=0), 0, 2)
        out3 = np.swapaxes(fdiff(np.swapaxes(a, 0, 3), n, axis=0), 0, 3)

        assert_array_equal(fdiff(a, n, axis=1), out1)
        assert_array_equal(fdiff(a, n, axis=2), out2)
        assert_array_equal(fdiff(a, n, axis=3), out3)
        assert_array_equal(fdiff(a, n, axis=0), fdiff(a, n, axis=-4))
        assert_array_equal(fdiff(a, n, axis=1), fdiff(a, n, axis=-3))
        assert_array_equal(fdiff(a, n, axis=2), fdiff(a, n, axis=-2))
        assert_array_equal(fdiff(a, n, axis=3), fdiff(a, n, axis=-1))