Exemplo n.º 1
0
import numpy as np
import matplotlib.pyplot as plt

import fract

%matplotlib tk

N = 10
hs = [0.25, 0.75]

for H in hs:
    z = fract.fbm2D_midpoint(H,N)

    plt.imshow(z)
    # plt.title(r"H = %g, %i x %i points"%(H, 2**N, 2**N))
    plt.savefig(("midpoint%g.png"%H), bbox_inches='tight' )
    plt.show()
Exemplo n.º 2
0
        field1 = field1[0:n_cut, 0:m_cut]
        field2 = field2[0:n_cut, 0:m_cut]
    else:
        n_cut = int(n / (np.sqrt(2) * 2))
        m_cut = int(m / (np.sqrt(2) * 2))

        field1 = field1[0:n_cut, 0:m_cut]
        field2 = field2[0:n_cut, 0:m_cut]

    return (field1, field2)


# gen_params = fbm2D_exact(0.7, 512)

# f1, f2 = fbm2D_exact_from_generator(*gen_params)
# plt.imshow(f1)
# plt.imshow(f2)

exact_image = fbm2D_exact(H=0.7, n_out=2**9)
plt.figure()
plt.imshow((exact_image))
plt.title("exact image")
plt.show()

midpoint_image = fract.fbm2D_midpoint(H=0.7, N=9)
plt.figure()
plt.imshow((midpoint_image))
plt.title("midpoint image")
plt.show()
Exemplo n.º 3
0

def pow_law(x, a, b):
    return a * np.power(x, b)
    # return a * x**(b)


def pow_law_jacobian(x, a, b):
    return b * a * x**(b - 1)


if __name__ == '__main__':
    print("generating")
    N = 10
    gen_H = np.float64(0.8)
    z2d = fract.fbm2D_midpoint(gen_H, N)

    plt.imshow(z2d, interpolation="None")
    plt.show()

    detect_H, freq_exp, c, freqs, powers = profile_fourier_from_z2d(
        z2d, images=False, corr=True)

    freqs = freqs[2:]
    powers = powers[2:]
    sigmas = powers

    popt, pcov = scipy.optimize.curve_fit(pow_law,
                                          freqs,
                                          powers,
                                          sigma=sigmas,