Exemplo n.º 1
0
    def timing_op2_complex(self, ufunc, dtype=np.float64):
        n_vec = 40000
        max_bin_exp = 200
        rg = np.random.default_rng(1)

        op1 = rg.random([n_vec],
                        dtype=dtype) + 1j * rg.random([n_vec], dtype=dtype)
        exp1 = rg.integers(-max_bin_exp, max_bin_exp)
        e_op1 = Xrange_array(op1, exp1)
        op1 = op1 * 2.**exp1

        op2 = rg.random([n_vec],
                        dtype=dtype) + 1j * rg.random([n_vec], dtype=dtype)
        exp2 = rg.integers(-max_bin_exp, max_bin_exp)
        e_op2 = Xrange_array(op2, exp2)
        op2 = op2 * 2.**exp2

        t0 = -time.time()
        e_res = ufunc(e_op1, e_op2)
        t0 += time.time()

        t1 = -time.time()
        expected = ufunc(op1, op2)
        t1 += time.time()

        np.testing.assert_array_equal(e_res.to_standard(), expected)

        print("\ntiming", ufunc, dtype, t0, t1, t0 / t1)
        return t0 / t1
Exemplo n.º 2
0
    def test_cumprod(self):
        almost = True
        cmp_op = False
        for dtype in [np.float32, np.float64]:
            # We need to prevent overflow of 'standard numbers' for the test
            # to be meaningful...
            if dtype == np.float32:
                n_vec = 100
                max_bin_exp = 3
                resh = (4, 5, 5)
            else:
                n_vec = 200
                max_bin_exp = 10
                resh = (4, 10, 5)

            rg = np.random.default_rng(1)

            op1 = (rg.random([n_vec], dtype=dtype) +
                   1j * rg.random([n_vec], dtype=dtype))
            op1 *= 2.**rg.integers(low=-max_bin_exp,
                                   high=max_bin_exp,
                                   size=[n_vec])

            op2 = (rg.random([n_vec], dtype=dtype))
            exp_shift_array = rg.integers(low=-max_bin_exp,
                                          high=max_bin_exp,
                                          size=[n_vec])

            expected = np.cumprod(op1)
            res = np.cumprod(Xrange_array(op1))
            _matching(res, expected, almost, dtype, cmp_op)

            expected = np.cumprod(op2 * 2.**exp_shift_array)
            res = np.cumprod(Xrange_array(op2, exp_shift_array))
            _matching(res, expected, almost, dtype, cmp_op, ktol=2.)

            _op3 = Xrange_array(op2, exp_shift_array).reshape(*resh)
            op3 = (op2 * 2.**exp_shift_array).reshape(resh)
            for axis in range(3):
                res = np.cumprod(_op3, axis=axis)
                expected = np.cumprod(op3, axis=axis)
                _matching(res, expected, almost, dtype, cmp_op)

            expected = np.cumprod(op1 * 2.**exp_shift_array)
            res = np.cumprod(Xrange_array(op1, exp_shift_array))
            _matching(res, expected, almost, dtype, cmp_op, ktol=8)

            _op4 = Xrange_array(op1, exp_shift_array).reshape(*resh)
            op4 = (op1 * 2.**exp_shift_array).reshape(*resh)
            for axis in range(3):
                res = np.cumprod(_op4, axis=axis)
                expected = np.cumprod(op4, axis=axis)
                _matching(res, expected, almost, dtype, cmp_op)
Exemplo n.º 3
0
    def test_sub(self):
        for (dtypea, dtypeb
             ) in crossed_dtypes:  #, np.complex128]: # np.complex64 np.float32
            with self.subTest(dtypea=dtypea, dtypeb=dtypeb):
                nvec = 10000
                xa, stda = generate_random_xr(dtypea,
                                              nvec=nvec)  # , max_bin_exp=250)
                xb, stdb = generate_random_xr(dtypeb, nvec=nvec, seed=800)
                res = Xrange_array.empty(xa.shape,
                                         dtype=np.result_type(dtypea, dtypeb))
                expected = stda - stdb
                numba_test_sub(xa, xb, res)
                # Numba timing without compilation
                t_numba = -time.time()
                numba_test_sub(xa, xb, res)
                t_numba += time.time()
                # numpy timing
                t_np = -time.time()
                res_np = xa - xb
                t_np += time.time()

                _matching(res, expected)
                _matching(res_np, expected)

                print("t_numba", t_numba)
                print("t_numpy", t_np, t_numba / t_np)
                expr = (t_numba < t_np)
                self.assertTrue(expr, msg="Numba speed below numpy")

                # Test substract a scalar
                numba_test_sub(xa, stdb, res)
                _matching(res, expected)
                numba_test_sub(stda, xb, res)
                _matching(res, expected)
Exemplo n.º 4
0
    def test_abs2(self):
        for dtype in (np.float64, np.complex128):  # np.complex64 np.float32
            with self.subTest(dtype=dtype):
                nvec = 10000
                xa, stda = generate_random_xr(dtype, nvec=nvec, max_bin_exp=75)
                # Adjust the mantissa to be sure to trigger a renorm for some
                # (around 30 %) cases
                xa = np.asarray(xa)
                exp = np.copy(xa["exp"])
                xa["mantissa"] *= 2.**(2 * exp)
                xa["exp"] = -exp
                xa = xa.view(Xrange_array)
                res = Xrange_array.empty(xa.shape, dtype=dtype)
                expected = np.abs(stda)**2

                numba_test_abs(xa, res)
                # Numba timing without compilation
                t_numba = -time.time()
                numba_test_abs2(xa, res)
                t_numba += time.time()

                _matching(res,
                          expected,
                          almost=True,
                          dtype=np.float64,
                          ktol=2.)
Exemplo n.º 5
0
    def test_div(self):
        for (dtypea, dtypeb
             ) in crossed_dtypes:  #, np.complex128]: # np.complex64 np.float32
            with self.subTest(dtypea=dtypea, dtypeb=dtypeb):
                nvec = 100000
                xa, stda = generate_random_xr(dtypea,
                                              nvec=nvec,
                                              max_bin_exp=75)
                # Adjust the mantissa to be sure to trigger a renorm for some
                # (around 30 %) cases
                xa = np.asarray(xa)
                exp = np.copy(xa["exp"])
                xa["mantissa"] *= 2.**(2 * exp)
                xa["exp"] = -exp
                xa = xa.view(Xrange_array)
                xb, stdb = generate_random_xr(dtypeb, nvec=nvec, seed=7800)
                res = Xrange_array.empty(xa.shape,
                                         dtype=np.result_type(dtypea, dtypeb))
                expected = stda / stdb

                numba_test_div(xa, xb, res)
                # Numba timing without compilation
                t_numba = -time.time()
                numba_test_div(xa, xb, res)
                t_numba += time.time()
                # numpy timing
                t_np = -time.time()
                res_np = xa / xb
                t_np += time.time()

                _matching(res,
                          expected,
                          almost=True,
                          dtype=np.float64,
                          ktol=2.)
                _matching(res_np,
                          expected,
                          almost=True,
                          dtype=np.float64,
                          ktol=2.)

                print("t_numba", t_numba)
                print("t_numpy", t_np, t_numba / t_np)
                expr = (t_numba < t_np)
                self.assertTrue(expr, msg="Numba speed below numpy")

                # Test divide by a scalar
                numba_test_div(xa, stdb, res)
                _matching(res,
                          expected,
                          almost=True,
                          dtype=np.float64,
                          ktol=2.)
                numba_test_div(stda, xb, res)
                _matching(res,
                          expected,
                          almost=True,
                          dtype=np.float64,
                          ktol=2.)
Exemplo n.º 6
0
    def test_sum(self):
        almost = True
        cmp_op = False
        for dtype in [np.float32, np.float64]:
            n_vec = 1000
            max_bin_exp = 20
            rg = np.random.default_rng(1)

            op1 = (rg.random([n_vec], dtype=dtype) +
                   1j * rg.random([n_vec], dtype=dtype))
            op1 *= 2.**rg.integers(low=-max_bin_exp,
                                   high=max_bin_exp,
                                   size=[n_vec])

            op2 = (rg.random([n_vec], dtype=dtype))
            exp_shift_array = rg.integers(low=-max_bin_exp,
                                          high=max_bin_exp,
                                          size=[n_vec])

            expected = np.sum(op1)
            res = np.sum(Xrange_array(op1))
            _matching(res, expected, almost, dtype, cmp_op)

            expected = np.sum(op2 * 2.**exp_shift_array)
            res = np.sum(Xrange_array(op2, exp_shift_array))
            _matching(res, expected, almost, dtype, cmp_op)

            _op3 = Xrange_array(op2, exp_shift_array).reshape(10, 10, 10)
            op3 = (op2 * 2.**exp_shift_array).reshape(10, 10, 10)
            for axis in range(3):
                res = np.sum(_op3, axis=axis)
                expected = np.sum(op3, axis=axis)
                _matching(res, expected, almost, dtype, cmp_op)

            expected = np.sum(op1 * 2.**exp_shift_array)
            res = np.sum(Xrange_array(op1, exp_shift_array))
            _matching(res, expected, almost, dtype, cmp_op)

            _op4 = Xrange_array(op1, exp_shift_array).reshape(10, 10, 10)
            op4 = (op1 * 2.**exp_shift_array).reshape(10, 10, 10)
            for axis in range(3):
                res = np.sum(_op4, axis=axis)
                expected = np.sum(op4, axis=axis)
                _matching(res, expected, almost, dtype, cmp_op)
Exemplo n.º 7
0
 def test_setitem(self):
     for dtype in [np.float64, np.complex128]:
         with self.subTest(dtype=dtype):
             nvec = 500
             xr, std = generate_random_xr(dtype, nvec=nvec)
             xr2 = Xrange_array.zeros(xr.shape, dtype)
             for i in range(nvec):
                 val_tuple = (xr._mantissa[i], xr._exp[i])
                 numba_test_setitem(xr2, i, val_tuple)
             _matching(xr2, std)
Exemplo n.º 8
0
    def timing_abs2_complex(self, dtype=np.float64):
        import time
        n_vec = 40000
        max_bin_exp = 20
        rg = np.random.default_rng(1)

        op = rg.random([n_vec],
                       dtype=dtype) + 1j * rg.random([n_vec], dtype=dtype)
        exp = rg.integers(-max_bin_exp, max_bin_exp)
        e_op = Xrange_array(op, exp)
        op = op * 2.**exp

        t0 = -time.time()
        e_res = e_op.abs2()
        t0 += time.time()

        t1 = -time.time()
        expected = op * np.conj(op)
        t1 += time.time()

        np.testing.assert_array_equal(e_res.to_standard(), expected)
        return t0 / t1
Exemplo n.º 9
0
 def test_angle(self):
     for dtype in [np.float32, np.float64]:
         n_vec = 1000
         max_bin_exp = 20
         rg = np.random.default_rng(1)
         op1 = (rg.random([n_vec], dtype=dtype) +
                1j * rg.random([n_vec], dtype=dtype))
         exp_shift_array = rg.integers(low=-max_bin_exp,
                                       high=max_bin_exp,
                                       size=[n_vec])
         _op1 = Xrange_array(op1, exp_shift_array)
         op1 *= 2.**exp_shift_array
         np.testing.assert_array_equal(np.angle(op1), np.angle(_op1))
Exemplo n.º 10
0
 def test_item_assignment(self):
     Xa = Xrange_array(["1.0e1002", "2.0e1000"])
     with np.printoptions(precision=10, linewidth=100) as _:
         assert Xa[0].__str__() == " 1.0000000000e+1002"
         assert type(Xa[0]) is Xrange_array
     assert Xa[0] == Xrange_array("1.0e1002")
     Xa[1] = Xrange_array("9.876543e-999")
     assert Xa[1] == Xrange_array("9.876543e-999")
     Xb = Xa + 1.j * Xa
     assert Xb[0] == Xa[0] + 1.j * Xa[0]
     Xb[0] = Xa[0] + 3.14j * Xa[0]
     assert Xb[0] == Xa[0] + 3.14j * Xa[0]
     Xb[0] = Xa[0]
     assert Xb[0] == Xa[0]
     Xb = Xa + 2.j * Xa
     assert np.all(Xb.real == Xa)
     assert np.all(Xb.imag == 2 * Xa)
     Xb.real = -Xa
     assert np.all(Xb.real == -Xa)
     assert np.all(Xb.imag == 2 * Xa)
     Xb.imag = -2 * Xa
     assert np.all(Xb.real == -Xa)
     assert np.all(Xb.imag == -2. * Xa)
Exemplo n.º 11
0
    def test_sqrt(self):
        for dtype in (np.float64, np.complex128):  # np.complex64 np.float32
            with self.subTest(dtype=dtype):
                nvec = 10000
                xa, stda = generate_random_xr(dtype, nvec=nvec, max_bin_exp=75)
                # sqrt not defined for negative reals
                if dtype == np.float64:
                    xa = np.abs(xa)
                    stda = np.abs(stda)
                # Adjust the mantissa to be sure to trigger a renorm for some
                # (around 30 %) cases
                xa = np.asarray(xa)
                exp = np.copy(xa["exp"])
                xa["mantissa"] *= 2.**(2 * exp)
                xa["exp"] = -exp
                xa = xa.view(Xrange_array)
                res = Xrange_array.empty(xa.shape, dtype=dtype)
                expected = np.sqrt(stda)

                numba_test_sqrt(xa, res)
                # Numba timing without compilation
                t_numba = -time.time()
                numba_test_sqrt(xa, res)
                t_numba += time.time()
                # numpy timing
                t_np = -time.time()
                res_np = np.sqrt(xa)
                t_np += time.time()

                _matching(res,
                          expected,
                          almost=True,
                          dtype=np.float64,
                          ktol=2.)
                _matching(res_np,
                          expected,
                          almost=True,
                          dtype=np.float64,
                          ktol=2.)

                print("t_numba", t_numba)
                print("t_numpy", t_np, t_numba / t_np)
                expr = (t_numba < t_np)
                self.assertTrue(expr, msg="Numba speed below numpy")
Exemplo n.º 12
0
def generate_random_xr(dtype, nvec=500, max_bin_exp=200, seed=100):
    """
    Generates a random Xrange array
    dtype: mantissa dtype
    nvec: number of pts
    max_bin_exp max of base 2 exponent abs
    seed : random seed
    
    Return
    Xrange array, standard array
    """
    rg = np.random.default_rng(seed)
    if dtype in from_complex.keys():
        r_dtype = from_complex[dtype]
        mantissa = ((rg.random([nvec], dtype=r_dtype) * 2. - 1.) + 1j *
                    (2. * rg.random([nvec], dtype=r_dtype) - 1.))
    else:
        mantissa = rg.random([nvec], dtype=dtype) * 2. - 1.

    exp = rg.integers(low=-max_bin_exp, high=max_bin_exp, size=[nvec])

    xr = Xrange_array(mantissa, exp=exp)
    std = mantissa.copy() * (2.**exp)
    return xr, std
Exemplo n.º 13
0
    def test_print(self):
        """ Testing basic Xrange array prints """
        Xrange_array.MAX_COUNTER = 5
        a = np.array([1., 1., np.pi, np.pi], dtype=np.float64)
        Xa = Xrange_array(a)
        for exp10 in range(1001):
            Xa = Xa * [-10., 0.1, 10., -0.1]
        str8 = ("[-1.00000000e+1001  1.00000000e-1001"
                "  3.14159265e+1001 -3.14159265e-1001]")
        str8_m = ("[ 1.00000000e+1001 -1.00000000e-1001"
                  " -3.14159265e+1001  3.14159265e-1001]")
        str2 = ("[-1.00e+1001  1.00e-1001  3.14e+1001 -3.14e-1001]")
        with np.printoptions(precision=2, linewidth=100) as _:
            assert Xa.__str__() == str2
        with np.printoptions(precision=8, linewidth=100) as _:
            assert Xa.__str__() == str8
        with np.printoptions(precision=8, linewidth=100) as _:
            assert (-Xa).__str__() == str8_m

        a = np.array([0.999999, 1.00000, 0.9999996, 0.9999994],
                     dtype=np.float64)
        str5 = "[ 9.99999e-01  1.00000e+00  1.00000e+00  9.99999e-01]"
        for k in range(10):
            Xa = Xrange_array(a * 0.5**k, k * np.ones([4], dtype=np.int32))
            with np.printoptions(precision=5) as _:
                assert Xa.__str__() == str5

        a = 1.j * np.array([1., 1., np.pi, np.pi], dtype=np.float64)
        Xa = Xrange_array(a)
        for exp10 in range(1000):
            Xa = [-10., 0.1, 10., -0.1] * Xa
        str2 = ("[ 0.00e+00➕1.00e+1000j  0.00e+00➕1.00e-1000j"
                "  0.00e+00➕3.14e+1000j  0.00e+00➕3.14e-1000j]")
        with np.printoptions(precision=2, linewidth=100) as _:
            assert Xa.__str__() == str2

        a = np.array([[0.1, 10.], [np.pi, 1. / np.pi]], dtype=np.float64)
        Xa = Xrange_array(a)
        Ya = np.copy(Xa).view(Xrange_array)
        for exp10 in range(21):
            Xa = np.sqrt(Xa * Xa * Xa * Xa)
        for exp10 in range(21):
            Ya = Ya * Ya
        str6 = ("[[ 1.000000e-2097152  1.000000e+2097152]\n"
                " [ 7.076528e+1042598  1.413122e-1042599]]")
        with np.printoptions(precision=6, linewidth=100) as _:
            assert Xa.__str__() == str6
            assert Ya.__str__() == str6

        Xa = Xrange_array([["123.456e-1789", "-.3e-7"], ["1.e700", "1.0"]])
        str6 = ("[[ 1.234560e-1787 -3.000000e-08]\n"
                " [ 1.000000e+700  1.000000e+00]]")
        str6_sq = ("[[ 1.524138e-3574  9.000000e-16]\n"
                   " [ 1.000000e+1400  1.000000e+00]]")
        Xb = Xa - 1.j * Xa**2
        with np.printoptions(precision=6, linewidth=100) as _:
            assert Xa.__str__() == str6
            assert (Xa**2).__str__() == str6_sq

        # Testing accuracy of mantissa for highest exponents
        Xa = Xrange_array([["1.0e+646456992", "1.23456789012345e+646456992"],
                           ["1.0e+646456991", "1.23456789012345e+646456991"],
                           ["1.0e+646456990", "1.23456789012345e+646456990"],
                           ["-1.0e-646456991", "1.23456789012345e-646456991"],
                           ["1.0e-646456992", "1.23456789012345e-646456992"]])
        str_14 = (
            "[[ 1.00000000000000e+646456992  1.23456789012345e+646456992]\n"
            " [ 1.00000000000000e+646456991  1.23456789012345e+646456991]\n"
            " [ 1.00000000000000e+646456990  1.23456789012345e+646456990]\n"
            " [-1.00000000000000e-646456991  1.23456789012345e-646456991]\n"
            " [ 1.00000000000000e-646456992  1.23456789012345e-646456992]]")
        with np.printoptions(precision=14, linewidth=100) as _:
            assert Xa.__str__() == str_14

        Xb = np.array([1., -1.j]) * np.pi * Xrange_array(
            ["1.e+646456991", "1.e-646456991"])
        str_14 = ("[ 3.14159265358979e+646456991➕0.00000000000000e+00j\n"
                  "  0.00000000000000e+00➖3.14159265358979e-646456991j]")
        with np.printoptions(precision=14, linewidth=100) as _:
            assert Xb.__str__() == str_14
Exemplo n.º 14
0
    def test_template_view(self):
        """
        Testing basic array capabilities
        Array creation via __new__, template of view
        real and imag are views
        """
        a = np.linspace(0., 5., 12, dtype=np.complex128)
        b = Xrange_array(a)
        # test shape of b and its mantissa / exponenent fields
        assert b.shape == a.shape
        assert b._mantissa.shape == a.shape
        assert b._exp.shape == a.shape
        # b is a full copy not a view
        b11_val = b[11]
        assert b[11] == b11_val  #(5.0 + 0.j, 0, 0)
        m = b._mantissa
        assert m[11] == 5.
        assert a[11] != 10.
        a[11] = 10.
        assert b[11] == b11_val
        # you have to make a new instance to see the modification
        b = Xrange_array(a)
        assert b[11] != b11_val
        m = b._mantissa
        assert m[11] == 10.

        # Testing Xrange_array from template
        c = b[10:]
        # test shape Xrange_array subarray and its mantissa / exponenent
        assert c.shape == a[10:].shape
        assert c._mantissa.shape == a[10:].shape
        assert c._exp.shape == a[10:].shape
        # modifying subarray modifies array
        new_val = (12345. + 0.j, 6)
        c[1] = Xrange_array(*new_val)
        assert b[11] == c[1]
        # modifying array modifies subarray
        new_val = (98765. + 0.j, 4)
        b[10] = Xrange_array(*new_val)
        assert b[10] == c[0]

        # Testing Xrange_array from view
        d = a.view(Xrange_array)
        assert d.shape == a.shape
        assert d._mantissa.shape == a[:].shape

        # modifying array modifies view
        val = a[5]
        assert d._mantissa[5] == val
        val = 8888888.
        a[5] = val

        # Check that imag and real are views of the original array
        e = Xrange_array(a + 2.j * a)
        assert e.to_standard()[4] == (20. + 40.j) / 11.
        re = (e.real).copy()
        re[4] = Xrange_array(np.pi, 0)
        e.real = re
        im = (e.imag).copy()
        im[4] = Xrange_array(-np.pi, 0)
        e.imag = im

        assert e.to_standard()[4] == (1. - 1.j) * np.pi
        bb = Xrange_array(np.linspace(0., 5., 12, dtype=np.float64))

        np.testing.assert_array_equal(bb.real, bb)
        bb.real[0] = Xrange_array(1.875, 6)  # 120...
        assert bb.to_standard()[0] == 120.
        np.testing.assert_array_equal(bb.imag.to_standard(), 0.)
Exemplo n.º 15
0
    def test_edge_cases(self):
        _dtype = np.complex128
        base = np.linspace(0., 1500., 11, dtype=_dtype)
        base2 = np.linspace(-500., 500., 11, dtype=np.float64)
        # mul
        b = (Xrange_array((2. - 1.j) * base) * Xrange_array(
            (-1. + 1.j) * base2))
        expected = ((2. - 1j) * base) * ((-1. + 1.j) * base2)
        _matching(b, expected)
        # add
        b = (Xrange_array((2. - 1.j) * base) + Xrange_array(
            (-1. + 1.j) * base2))
        expected = ((2. - 1.j) * base) + ((-1. + 1j) * base2)
        _matching(b, expected)
        #  <=
        b = (Xrange_array((2. - 1j) * base).real <= Xrange_array(
            (-1. + 1j) * base2).real)
        expected = ((2. - 1j) * base).real <= ((-1. + 1j) * base2).real
        np.testing.assert_array_equal(b, expected)

        #   Testing equality with "almost close" floats
        base = -np.ones([40], dtype=np.float64)
        base = np.linspace(0., 1., 40, dtype=np.float64)
        base2 = base + np.linspace(-1., 1., 40) * np.finfo(np.float64).eps
        exp = np.zeros(40, dtype=np.int32)

        _base = Xrange_array(base, exp)
        _base2 = Xrange_array(base2 * 2., exp - 1)
        #    print("######################1")
        #    print("_base", _base)
        #    print("_base2", _base2)
        #    print("== ref: ", base == base2)
        np.testing.assert_array_equal(_base == _base2, base == base2)
        np.testing.assert_array_equal(_base == base2, base == base2)
        # print("######################1.1")
        np.testing.assert_array_equal(_base[:2] == _base2[:2],
                                      base[:2] == base2[:2])
        #    print("!=", _base != _base2)
        #    print("ref: ", base != base2)
        np.testing.assert_array_equal(_base != _base2, base != base2)
        np.testing.assert_array_equal(_base <= _base2, base <= base2)
        np.testing.assert_array_equal(_base >= _base2, base >= base2)
        np.testing.assert_array_equal(_base < _base2, base < base2)
        np.testing.assert_array_equal(_base > _base2, base > base2)

        shift = np.arange(40)
        _base2 = Xrange_array(base2 / 2**shift, exp + shift)
        np.testing.assert_array_equal(_base != _base2, base != base2)
        #   print("######################2")
        np.testing.assert_array_equal(_base == _base2, base == base2)
        np.testing.assert_array_equal(_base > _base2, base > base2)
        #  print("######################exit")
        _base = _base * (1. + 1.j)
        _base2 = _base2 * (1. + 1.j)
        base = base * (1. + 1.j)
        base2 = base2 * (1. + 1.j)
        np.testing.assert_array_equal(_base == _base2, base == base2)
        np.testing.assert_array_equal(_base != _base2, base != base2)
        np.testing.assert_array_equal(_base[2] != _base2[2],
                                      base[2] != base2[2])
        np.testing.assert_array_equal(_base[20] != _base2[20],
                                      base[20] != base2[20])
        np.testing.assert_array_equal(_base[20] == _base2[20],
                                      base[20] == base2[20])
        np.testing.assert_array_equal(_base.real == _base2.real,
                                      base.real == base2.real)
        np.testing.assert_array_equal(_base.real != _base2.real,
                                      base.real != base2.real)
        np.testing.assert_array_equal(_base[20].real == _base2[20].real,
                                      base[20].real == base2[20].real)
        np.testing.assert_array_equal(_base.real[20] == _base2.real[20],
                                      base.real[20] == base2.real[20])
        np.testing.assert_array_equal(_base.real <= _base2.real,
                                      base.real <= base2.real)
        np.testing.assert_array_equal(_base[20].real <= _base2[20].real,
                                      base[20].real <= base2[20].real)
        np.testing.assert_array_equal(_base[2].real <= _base2[2].real,
                                      base[2].real <= base2[2].real)

        #   Testing complex equality logic
        a = np.array([1., 1., 1., 1.]) + 1.j * np.array([1., 1., 1., 1.])
        b = np.array([1., 1., -1., -1.]) + 1.j * np.array([1., -1., 1., -1.])
        a_ = Xrange_array(a)
        b_ = Xrange_array(b)
        np.testing.assert_array_equal(a_ == b_, a == b)
        np.testing.assert_array_equal(a_ == b, a == b)
        np.testing.assert_array_equal(a == b_, a == b)
        np.testing.assert_array_equal(a_ != b_, a != b)
        np.testing.assert_array_equal(a_ != b, a != b)
        np.testing.assert_array_equal(a != b_, a != b)
Exemplo n.º 16
0
    def test_Xrange_SA(self):
        arr = [1., 2., 5.]
        _P = Xrange_SA(arr, 10)
        P = np.polynomial.Polynomial(arr)
        _matching(_P.coeffs, P.coef)
        _matching((_P * _P).coeffs, (P * P).coef)
        _matching((_P * 2.).coeffs, (P * 2.).coef)
        _matching((2. * _P).coeffs, (2. * P).coef)
        _matching((_P + _P).coeffs, (P + P).coef)
        _matching((_P + 2.).coeffs, (P + 2.).coef)
        _matching((2. + _P).coeffs, (2. + P).coef)
        _matching((_P - (2. * _P)).coeffs, (P - (2. * P)).coef)
        _matching((_P - 2.).coeffs, (P - 2.).coef)

        two = Xrange_array([2.])
        _matching((_P * two).coeffs, (P * 2.).coef)
        _matching((two * _P).coeffs, (2. * P).coef)
        _matching((_P + two).coeffs, (P + 2.).coef)
        _matching((two + _P).coeffs, (2. + P).coef)
        _matching((_P - (two * _P)).coeffs, (P - (2. * P)).coef)
        _matching((_P - two).coeffs, (P - 2.).coef)

        arrP = [1., 2., 3., 4.]
        arrQ = [4., 3., 2.]
        _P = Xrange_SA(arrP, 3)
        _Q = Xrange_SA(arrQ, 3)
        P = np.polynomial.Polynomial(arrP)
        Q = np.polynomial.Polynomial(arrQ)
        _prod = _P * _Q
        prod = P * Q
        res = prod - prod.cutdeg(3)
        _matching(_prod.err, np.sqrt(np.sum(np.abs(res.coef)**2)))

        arrP = [1. - 1.j, 2. + 4.j, 3. + 1.j, 4. - 3.j]
        arrQ = [4. - 7.j, 3. - 1.j, 2. + 2.j]
        _P = Xrange_SA(arrP, 3)
        _Q = Xrange_SA(arrQ, 3)
        P = np.polynomial.Polynomial(arrP)
        Q = np.polynomial.Polynomial(arrQ)
        _prod = _P * _Q
        prod = P * Q
        res = prod - prod.cutdeg(3)
        _matching(_prod.err, np.sqrt(np.sum(np.abs(res.coef)**2)), almost=True)

        arr = [1. + 1.j, 1 - 1.j]
        _P = Xrange_SA(arr, 10)
        P = np.polynomial.Polynomial(arr)
        _matching((_P * _P).coeffs, (P * P).coef)

        for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
            with self.subTest(dtype=dtype):
                n_vec = 100
                rg = np.random.default_rng(101)

                if dtype in [np.float32, np.float64]:
                    arr = rg.random([n_vec], dtype=dtype)
                else:
                    real_dtype = (np.float32
                                  if dtype is np.complex64 else np.float64)
                    arr = rg.random([n_vec], dtype=real_dtype) + 1.j * (
                        rg.random([n_vec], dtype=real_dtype))

                _P = Xrange_SA(arr, 1000)
                P = np.polynomial.Polynomial(arr)
                _matching((_P * _P).coeffs, (P * P).coef,
                          almost=True,
                          ktol=3.,
                          dtype=dtype)

                n_vec2 = 83
                if dtype in [np.float32, np.float64]:
                    arr2 = rg.random([n_vec2], dtype=dtype)
                else:
                    real_dtype = (np.float32
                                  if dtype is np.complex64 else np.float64)
                    arr2 = rg.random([n_vec2], dtype=real_dtype) + 1.j * (
                        rg.random([n_vec2], dtype=real_dtype))

                _Q = Xrange_polynomial(arr2, 1000)
                Q = np.polynomial.Polynomial(arr2)

                # checking with cutdeg - op_errT
                for cutdeg in range(120, 470,
                                    10):  # not testing below cutdeg...
                    _P = Xrange_SA(arr, cutdeg)
                    _Q = Xrange_SA(arr2, cutdeg)
                    _prod = _Q * _P
                    prod = Q * P
                    _matching(_prod.coeffs,
                              prod.cutdeg(cutdeg).coef,
                              almost=True,
                              ktol=3.,
                              dtype=dtype)
                    res = prod - prod.cutdeg(cutdeg)
                    _matching(_prod.err,
                              np.sqrt(np.sum(np.abs(res.coef)**2)),
                              almost=True,
                              ktol=10.,
                              dtype=dtype)
Exemplo n.º 17
0
def std_SA_loop(P0, n_iter, ref_path, kcX):
    xr_2 = Xrange_array(2.)  #(1j, numba.int32(1))
    P0 = P0 * (P0 + xr_2 * ref_path[0]) + kcX
    return P0
Exemplo n.º 18
0
    def test_expr(self):
        for (dtypea, dtypeb
             ) in crossed_dtypes:  #, np.complex128]: # np.complex64 np.float32

            dtype_res = np.result_type(dtypea, dtypeb)
            nvec = 10000
            xa, stda = generate_random_xr(dtypea,
                                          nvec=nvec)  # , max_bin_exp=250)
            xb, stdb = generate_random_xr(dtypeb, nvec=nvec, seed=800)
            res = Xrange_array.empty(xa.shape, dtype=dtype_res)

            def get_numba_expr(case):
                if case == 0:

                    def numba_expr(xa, xb, out):
                        n, = xa.shape
                        for i in range(n):
                            out[i] = xa[i] * xb[i] * xa[i]
                elif case == 1:

                    def numba_expr(xa, xb, out):
                        n, = xa.shape
                        for i in range(n):
                            out[i] = xa[i] * xb[i] + xa[i] - 7.8
                elif case == 2:

                    def numba_expr(xa, xb, out):
                        n, = xa.shape
                        for i in range(n):
                            out[i] = (xb[i] * 2.) * (xa[i] + xa[i] * xb[i]) + (
                                xa[i] * xb[i] - 7.8 + xb[i])
                elif case == 3:

                    def numba_expr(xa, xb, out):
                        n, = xa.shape
                        for i in range(n):
                            out[i] = (
                                (xb[i] * 2.) *
                                (xa[i] + np.abs(xa[i] * xb[i]) + 1.) +
                                (xa[i] * np.sqrt(np.abs(xb[i]) + 7.8) + xb[i]))
                else:
                    raise ValueError(case)
                return numba.njit(numba_expr)

            def get_std_expr(case):
                if case == 0:

                    def std_expr(xa, xb):
                        return xa * xb * xa
                elif case == 1:

                    def std_expr(xa, xb):
                        return xa * xb + xa - 7.8
                elif case == 2:

                    def std_expr(xa, xb):
                        return (xb * 2.) * (xa + xa * xb) + (xa * xb - 7.8 +
                                                             xb)
                elif case == 3:

                    def std_expr(xa, xb):
                        return ((xb * 2.) * (xa + np.abs(xa * xb) + 1.) +
                                (xa * np.sqrt(np.abs(xb) + 7.8) + xb))
                else:
                    raise ValueError(case)
                return std_expr

            n_case = 4
            for case in range(n_case):

                with self.subTest(dtypea=dtypea, dtypeb=dtypeb, expr=case):
                    expected = get_std_expr(case)(stda, stdb)

                    # numpy timing
                    t_np = -time.time()
                    res_np = get_std_expr(case)(xa, xb)
                    t_np += time.time()

                    numba_expr = get_numba_expr(case)
                    numba_expr(xa, xb, res)
                    # Numba timing without compilation
                    t_numba = -time.time()
                    numba_expr(xa, xb, res)
                    t_numba += time.time()

                    _matching(res,
                              expected,
                              almost=True,
                              dtype=np.float64,
                              ktol=2.)
                    _matching(res_np,
                              expected,
                              almost=True,
                              dtype=np.float64,
                              ktol=2.)

                    print("t_numba", t_numba)
                    print("t_numpy", t_np, t_numba / t_np)
                    expr = (t_numba < t_np)
                    self.assertTrue(expr, msg="Numba speed below numpy")
Exemplo n.º 19
0
    def test_Xrange_polynomial(self):
        arr = [1., 2., 5.]
        _P = Xrange_polynomial(arr, 10)
        P = np.polynomial.Polynomial(arr)
        _matching(_P.coeffs, P.coef)
        _matching((_P * _P).coeffs, (P * P).coef)
        _matching((_P * 2).coeffs, (P * 2).coef)
        _matching((2 * _P).coeffs, (2 * P).coef)
        _matching((_P + _P).coeffs, (P + P).coef)
        _matching((_P + 2).coeffs, (P + 2).coef)
        _matching((2 + _P).coeffs, (2 + P).coef)

        two = Xrange_array([2.])
        _matching((_P * two).coeffs, (P * 2).coef)
        _matching((two * _P).coeffs, (2 * P).coef)
        _matching((_P + two).coeffs, (P + 2).coef)
        _matching((two + _P).coeffs, (2 + P).coef)

        _matching((_P - (2 * _P)).coeffs, (P - (2 * P)).coef)
        _matching((_P - 2).coeffs, (P - 2).coef)

        arr = [1. + 1.j, 1 - 1.j]
        _P = Xrange_polynomial(arr, 2)
        P = np.polynomial.Polynomial(arr)
        _matching((_P * _P).coeffs, (P * P).coef)

        for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
            n_vec = 100
            rg = np.random.default_rng(101)

            if dtype in [np.float32, np.float64]:
                arr = rg.random([n_vec], dtype=dtype)
            else:
                real_dtype = np.float32 if dtype is np.complex64 else np.float64
                arr = rg.random([n_vec], dtype=real_dtype) + 1.j * (rg.random(
                    [n_vec], dtype=real_dtype))

            _P = Xrange_polynomial(arr, 1000)
            P = np.polynomial.Polynomial(arr)
            _matching((_P * _P).coeffs, (P * P).coef,
                      almost=True,
                      ktol=3.,
                      dtype=dtype)

            n_vec2 = 83
            if dtype in [np.float32, np.float64]:
                arr2 = rg.random([n_vec2], dtype=dtype)
            else:
                real_dtype = np.float32 if dtype is np.complex64 else np.float64
                arr2 = rg.random([n_vec2], dtype=real_dtype) + 1.j * (
                    rg.random([n_vec2], dtype=real_dtype))

            _Q = Xrange_polynomial(arr2, 1000)
            Q = np.polynomial.Polynomial(arr2)
            _matching((_Q * _P).coeffs, (Q * P).coef,
                      almost=True,
                      ktol=3.,
                      dtype=dtype)
            _matching((_P * _Q).coeffs, (P * Q).coef,
                      almost=True,
                      ktol=3.,
                      dtype=dtype)

            _matching(_P([1.]),
                      P(np.asarray([1.])),
                      almost=True,
                      ktol=3.,
                      dtype=dtype)
            _matching(_P([1.j]),
                      P(np.asarray([1.j])),
                      almost=True,
                      ktol=3.,
                      dtype=dtype)
            _matching(_P([arr]),
                      P(np.asarray([arr])),
                      almost=True,
                      ktol=3.,
                      dtype=dtype)

            # checking with cutdeg
            for cutdeg in range(1, 400, 10):
                _P = Xrange_polynomial(arr, cutdeg)
                _Q = Xrange_polynomial(arr2, cutdeg)
                _matching((_Q * _P).coeffs, (Q * P).cutdeg(cutdeg).coef,
                          almost=True,
                          ktol=3.,
                          dtype=dtype)
                _P = Xrange_polynomial(arr, cutdeg=1000)

        coeff = Xrange_array("1.e-1000")
        arr = [1., 2., 5.]
        _P = Xrange_polynomial(arr, 10)
        P = np.polynomial.Polynomial(arr)
        _matching((2. * _P).coeffs, (2. * P).coef)
        _matching((_P * 2.).coeffs, (P * 2.).coef)
        _matching((2. + _P).coeffs, (2. + P).coef)
        _matching((_P + 2.).coeffs, (P + 2.).coef)
        _matching((coeff + _P).coeffs, (_P + coeff).coeffs)
        coeff * _P
        _P * coeff
Exemplo n.º 20
0
def _test_op1(ufunc, almost=False, cmp_op=False, ktol=1.0):
    """
    General framework for testing unary operators on Xrange arrays
    """
    #    print("testing function", ufunc)
    rg = np.random.default_rng(100)

    n_vec = 500
    max_bin_exp = 20

    # testing binary operation of reals extended arrays
    for dtype in [np.float64, np.float32]:
        #        print("dtype", dtype)
        op1 = rg.random([n_vec], dtype=dtype)
        op1 *= 2.**rg.integers(low=-max_bin_exp,
                               high=max_bin_exp,
                               size=[n_vec])
        expected = ufunc(op1)
        res = ufunc(Xrange_array(op1))

        _matching(res, expected, almost, dtype, cmp_op, ktol)

        # Checking datatype
        assert res._mantissa.dtype == dtype

        # with non null shift array # culprit
        exp_shift_array = rg.integers(low=-max_bin_exp,
                                      high=max_bin_exp,
                                      size=[n_vec])
        expected = ufunc(op1 * (2.**exp_shift_array).astype(dtype))

        _matching(ufunc(Xrange_array(op1, exp_shift_array)), expected, almost,
                  dtype, cmp_op, ktol)
        # test "scalar"
        _matching(ufunc(Xrange_array(op1, exp_shift_array)[0]), expected[0],
                  almost, dtype, cmp_op, ktol)


#        print("c2")

# testing binary operation of reals extended arrays
    for dtype in [np.float32, np.float64]:
        op1 = (rg.random([n_vec], dtype=dtype) +
               1j * rg.random([n_vec], dtype=dtype))
        op1 *= 2.**rg.integers(low=-max_bin_exp,
                               high=max_bin_exp,
                               size=[n_vec])
        expected = ufunc(op1)
        res = ufunc(Xrange_array(op1))
        _matching(res, expected, almost, dtype, cmp_op, ktol)

        # Checking datatype
        to_complex = {np.float32: np.complex64, np.float64: np.complex128}
        if ufunc in [np.abs]:
            assert res._mantissa.dtype == dtype
        else:
            assert res._mantissa.dtype == to_complex[dtype]

        # with non null shift array
        exp_shift_array = rg.integers(low=-max_bin_exp,
                                      high=max_bin_exp,
                                      size=[n_vec])
        expected = ufunc(op1 * (2.**exp_shift_array))
        _matching(ufunc(Xrange_array(op1, exp_shift_array)), expected, almost,
                  dtype, cmp_op, ktol)
Exemplo n.º 21
0
def _test_op2(ufunc, almost=False, cmp_op=False):
    """
    General framework for testing operations between 2 Xrange arrays.
    """
    #    print("testing operation", ufunc)
    rg = np.random.default_rng(100)
    #    ea_type = (Xrange_array._FLOAT_DTYPES +
    #               Xrange_array._COMPLEX_DTYPES)
    n_vec = 500
    max_bin_exp = 20
    exp_shift = 2

    # testing binary operation of reals extended arrays
    for dtype in [np.float32, np.float64]:
        op1 = rg.random([n_vec], dtype=dtype)
        op2 = rg.random([n_vec], dtype=dtype)
        op1 *= 2.**rg.integers(low=-max_bin_exp,
                               high=max_bin_exp,
                               size=[n_vec])
        op2 *= 2.**rg.integers(low=-max_bin_exp,
                               high=max_bin_exp,
                               size=[n_vec])

        # testing operation between 2 Xrange_arrays OR between ER_A and
        # a standard np.array
        expected = ufunc(op1, op2)
        res = ufunc(Xrange_array(op1), Xrange_array(op2))
        _matching(res, expected, almost, dtype, cmp_op)

        #        # testing operation between 2 Xrange_arrays OR between ER_A and
        #        # a standard np.array xith dim 2
        expected_2d = ufunc(op1.reshape(50, 10), op2.reshape(50, 10))
        res_2d = ufunc(Xrange_array(op1.reshape(50, 10)),
                       Xrange_array(op2.reshape(50, 10)))

        _matching(res_2d, expected_2d, almost, dtype, cmp_op)

        # Checking datatype
        if ufunc in [np.add, np.multiply, np.subtract, np.divide]:
            assert res._mantissa.dtype == dtype

        if ufunc not in [np.equal, np.not_equal]:
            _matching(ufunc(op1, Xrange_array(op2)), expected, almost, dtype,
                      cmp_op)
            _matching(ufunc(Xrange_array(op1), op2), expected, almost, dtype,
                      cmp_op)
        # Testing with non-null exponent
        exp_shift_array = rg.integers(low=-exp_shift,
                                      high=exp_shift,
                                      size=[n_vec])
        expected = ufunc(op1 * 2.**exp_shift_array, op2 * 2.**-exp_shift_array)

        _matching(
            ufunc(Xrange_array(op1, exp_shift_array),
                  Xrange_array(op2, -exp_shift_array)), expected, almost,
            dtype, cmp_op)
        # testing operation of an Xrange_array with a scalar
        if ufunc not in [np.equal, np.not_equal]:
            expected = ufunc(op1[0], op2)
            _matching(ufunc(op1[0], Xrange_array(op2)), expected, almost,
                      dtype, cmp_op)
            expected = ufunc(op2, op1[0])
            _matching(ufunc(Xrange_array(op2), op1[0]), expected, almost,
                      dtype, cmp_op)

        # testing operation of an Xrange_array with a "Xrange" scalar
        if ufunc not in [np.equal, np.not_equal]:
            expected = ufunc(op1[0], op2)
            _matching(ufunc(Xrange_array(op1)[0], Xrange_array(op2)), expected,
                      almost, dtype, cmp_op)
            expected = ufunc(op2, op1[0])
            _matching(ufunc(Xrange_array(op2),
                            Xrange_array(op1)[0]), expected, almost, dtype,
                      cmp_op)

    if cmp_op and (ufunc not in [np.equal, np.not_equal]):
        return
    if ufunc in [np.maximum]:
        return

    # testing binary operation of complex extended arrays
    for dtype in [np.float32, np.float64]:
        n_vec = 20
        max_bin_exp = 20
        rg = np.random.default_rng(1)

        op1 = (rg.random([n_vec], dtype=dtype) +
               1j * rg.random([n_vec], dtype=dtype))
        op2 = (rg.random([n_vec], dtype=dtype) +
               1j * rg.random([n_vec], dtype=dtype))
        op1 *= 2.**rg.integers(low=-max_bin_exp,
                               high=max_bin_exp,
                               size=[n_vec])
        op2 *= 2.**rg.integers(low=-max_bin_exp,
                               high=max_bin_exp,
                               size=[n_vec])
        # testing operation between 2 Xrange_arrays OR between ER_A and
        # a standard np.array
        expected = ufunc(op1, op2)
        res = ufunc(Xrange_array(op1), Xrange_array(op2))
        _matching(res, expected, almost, dtype, cmp_op)

        # Checking datatype
        if ufunc in [np.add, np.multiply, np.subtract, np.divide]:
            to_complex = {np.float32: np.complex64, np.float64: np.complex128}
            assert res._mantissa.dtype == to_complex[dtype]

        _matching(ufunc(op1, Xrange_array(op2)), expected, almost, dtype,
                  cmp_op)
        _matching(ufunc(Xrange_array(op1), op2), expected, almost, dtype,
                  cmp_op)
        # Testing with non-null exponent (real and imag)
        expected = ufunc(op1 * 2.**exp_shift, op2 * 2.**-exp_shift)
        exp_shift_array = exp_shift * np.ones([n_vec], dtype=np.int32)
        _matching(
            ufunc(Xrange_array(op1, exp_shift_array),
                  Xrange_array(op2, -exp_shift_array)), expected, almost,
            dtype, cmp_op)
        # Testing cross product of real with complex
        expected = ufunc(op1 * 2.**exp_shift, (op2 * 2.**-exp_shift).real)
        exp_shift_array = exp_shift * np.ones([n_vec], dtype=np.int32)
        _matching(
            ufunc(Xrange_array(op1, exp_shift_array),
                  Xrange_array(op2, -exp_shift_array).real), expected, almost,
            dtype, cmp_op)
        expected = ufunc((op1 * 2.**exp_shift).imag, op2 * 2.**-exp_shift)
        _matching(
            ufunc(
                Xrange_array(op1, exp_shift_array).imag,
                Xrange_array(op2, -exp_shift_array)), expected, almost, dtype,
            cmp_op)
        # testing operation of an Xrange_array with a scalar
        expected = ufunc(op1[0], op2)
        _matching(ufunc(op1[0], Xrange_array(op2)), expected, almost, dtype,
                  cmp_op)
        expected = ufunc(op2, op1[0])
        _matching(ufunc(Xrange_array(op2), op1[0]), expected, almost, dtype,
                  cmp_op)
Exemplo n.º 22
0
@numba.njit
def numba_test_sa_mul(sa0, sa1):
    return sa0 * sa1


@numba.njit
def numba_test_sa_mul_0(sa0, sa1):
    return sa0 * sa1[0]


@numba.njit
def numba_test_sa_mul0(sa0, sa1):
    return sa0[0] * sa1


two = Xrange_array([2.])


@numba.njit
def numba_SA_loop(P0, n_iter, ref_path, kcX):
    xr_2 = numba_xr.Xrange_scalar(complex(2.), numba.int32(0))
    print("xr_2", xr_2.mantissa, xr_2.exp)
    print("two[0]", two[0].mantissa, two[0].exp)
    P0 = P0 * (P0 + xr_2 * ref_path[0]) + kcX
    #P0 = (P0 + xr_2 * ref_path[0]) + kcX
    #    print()
    #    P0 = P0 + kcX
    return P0


def std_SA_loop(P0, n_iter, ref_path, kcX):