Exemplo n.º 1
0
def lp_sampler(model, n_samples=1000, weights=None, constraints=None, select_probability=0.01,
               futile_cycle_threshold=1e2, variation_threshold=1e-4, merge_keys=False, verbose=True):

    if not weights:
        variability = FVA(model, constraints=constraints)

        weights = {r_id: 1.0 / (ub - lb) for r_id, (lb, ub) in variability.items()
                   if ub is not None and lb is not None
                       and variation_threshold < (ub - lb) < futile_cycle_threshold}

    samples = []
    solver = solver_instance(model)

    for i in range(n_samples):
        objective = {r_id: gauss(0, 1)*W for r_id, W in weights.items()
                     if random() < select_probability}

        sol = pFBA(model, objective=objective, constraints=constraints, solver=solver)
        if sol.status == Status.OPTIMAL:
            samples.append(sol.values)

    if verbose:
        print('Sampling success rate: {} (of {})'.format(len(samples), n_samples))

    if merge_keys:
        merged = OrderedDict()
        for r_id in model.reactions:
            merged[r_id] = [sample[r_id] for sample in samples]
        samples = merged

    return samples
Exemplo n.º 2
0
 def testRun(self):
     model = load_cbmodel(SMALL_TEST_MODEL, flavor='cobra')
     solution1 = pFBA(model)
     solution2 = FBA(model)
     self.assertEqual(solution1.status, Status.OPTIMAL)
     self.assertEqual(solution2.status, Status.OPTIMAL)
     growth1 = solution1.values[model.biomass_reaction]
     growth2 = solution2.values[model.biomass_reaction]
     self.assertAlmostEqual(growth1, growth2, places=4)
     norm1 = sum([abs(solution1.values[r_id]) for r_id in model.reactions])
     norm2 = sum([abs(solution2.values[r_id]) for r_id in model.reactions])
     self.assertLessEqual(norm1, norm2 + 1e-6)
Exemplo n.º 3
0
 def testRun(self):
     model = load_cbmodel(SMALL_TEST_MODEL, flavor='cobra')
     solution1 = pFBA(model)
     solution2 = FBA(model)
     self.assertEqual(solution1.status, Status.OPTIMAL)
     self.assertEqual(solution2.status, Status.OPTIMAL)
     growth1 = solution1.values[model.biomass_reaction]
     growth2 = solution2.values[model.biomass_reaction]
     self.assertAlmostEqual(growth1, growth2, places=4)
     norm1 = sum([abs(solution1.values[r_id]) for r_id in model.reactions])
     norm2 = sum([abs(solution2.values[r_id]) for r_id in model.reactions])
     self.assertLessEqual(norm1, norm2 + 1e-6)
Exemplo n.º 4
0
def _run_stoic_simutation(model, objective, minimize, constraints, method):
    if method == 'FBA':
        solution = FBA(model,
                       objective=objective,
                       minimize=minimize,
                       constraints=constraints)
    elif method == 'pFBA':
        solution = pFBA(model,
                        objective=objective,
                        minimize=minimize,
                        constraints=constraints)
    else:
        raise Exception("Unknown method to perform the simulation.")
    return solution.status, solution.values
Exemplo n.º 5
0
def eFlux(model, gene_exp, scale_rxn=None, scale_value=None, constraints=None, parsimonious=False):
    """ Run an E-Flux simulation (Colijn et al, 2009).

    Arguments:
        model (CBModel): model
        gene_exp (dict): transcriptomics data
        scale_rxn (str): reaction to scale flux vector (optional)
        scale_value (float): scaling factor (mandatory if scale_rxn is specified)
        constraints (dict): additional constraints (optional)
        parsimonious (bool): compute a parsimonious solution (default: False)

    Returns:
        Solution: solution
    """

    rxn_exp = gene_to_reaction_expression(model, gene_exp)
    max_exp = max(rxn_exp.values())
    bounds = {}

    for r_id, reaction in model.reactions.items():
        val = rxn_exp[r_id] / max_exp if r_id in rxn_exp else 1
        lb2 = -val if reaction.lb is None or reaction.lb < 0 else 0
        ub2 = val if reaction.ub is None or reaction.ub > 0 else 0
        bounds[r_id] = (lb2, ub2)

    if constraints:
        for r_id, x in constraints.items():
            lb, ub = x if isinstance(x, tuple) else (x, x)            
            lb2 = -1 if lb is None or lb < 0 else 0
            ub2 = 1 if ub is None or ub > 0 else 0
            bounds[r_id] = (lb2, ub2)

    if parsimonious:
        sol = pFBA(model, constraints=bounds)
    else:
        sol = FBA(model, constraints=bounds)

    if scale_rxn is not None:

        if sol.values[scale_rxn] != 0:
            k = abs(scale_value / sol.values[scale_rxn])
        else:
            k = 0

        for r_id, val in sol.values.items():
            sol.values[r_id] = val * k

    return sol
Exemplo n.º 6
0
def lp_sampler(model,
               n_samples=1000,
               weights=None,
               constraints=None,
               select_probability=0.01,
               futile_cycle_threshold=1e2,
               variation_threshold=1e-4,
               merge_keys=False,
               verbose=True):

    if not weights:
        variability = FVA(model, constraints=constraints)

        weights = {
            r_id: 1.0 / (ub - lb)
            for r_id, (lb, ub) in variability.items()
            if ub is not None and lb is not None and variation_threshold <
            (ub - lb) < futile_cycle_threshold
        }

    samples = []
    solver = solver_instance(model)

    for i in range(n_samples):
        objective = {
            r_id: gauss(0, 1) * W
            for r_id, W in weights.items() if random() < select_probability
        }

        sol = pFBA(model,
                   objective=objective,
                   constraints=constraints,
                   solver=solver)
        if sol.status == Status.OPTIMAL:
            samples.append(sol.values)

    if verbose:
        print('Sampling success rate: {} (of {})'.format(
            len(samples), n_samples))

    if merge_keys:
        merged = OrderedDict()
        for r_id in model.reactions:
            merged[r_id] = [sample[r_id] for sample in samples]
        samples = merged

    return samples
Exemplo n.º 7
0
def medium_test():
    SBML_FILE = "../../../examples/models/EC_SC_model.xml"
    model = load_cbmodel(SBML_FILE)
    model2 = fix_exchange_reactions_model(model)

    for r in model2.reactions:
        print(r)

    for r_id, rxn in model2.reactions.items():
        if r_id.startswith(
                'R_EX_'):  # ou tambem podes fazer if rxn.is_exchange:
            rxn.lb = 0
            rxn.ub = 1000 \
                #if rxn.ub is None else rxn.ub

    #sol 1
    constraints = {
        'R_EX_mn2_e__mod1': (-1000, 0),
        'R_EX_cobalt2_e__mod1': (-1000, 0),
        'R_EX_cl_e__mod1': (-1000, 0),
        'R_EX_xyl_D_medium_': (-12, 0),
        'R_EX_mobd_e__mod1': (-1000, 0),
        'R_EX_mg2_e__mod1': (-1000, 0),
        'R_EX_o2_medium_': (-2, 0),
        'R_EX_k_medium_': (-1000, 0),
        'R_EX_nh4_medium_': (-1000, 0),
        'R_EX_fe3_e__mod1': (-1000, 0),
        'R_EX_zn2_e__mod1': (-1000, 0),
        'R_EX_ca2_e__mod1': (-1000, 0),
        'R_EX_so4_medium_': (-1000, 0),
        'R_EX_pi_medium_': (-1000, 0),
        'R_EX_cu2_e__mod1': (-1000, 0)
    }

    #sol2
    constraints = {
        'R_EX_mn2_e__mod1': (-1000, 0),
        'R_EX_cobalt2_e__mod1': (-1000, 0),
        'R_EX_cl_e__mod1': (-1000, 0),
        'R_EX_mobd_e__mod1': (-1000, 0),
        'R_EX_cu_e__mod1': (-1000, 0),
        'R_EX_mg2_e__mod1': (-1000, 0),
        'R_EX_glc_D_medium_': (-12, 0),
        'R_EX_o2_medium_': (-2, 0),
        'R_EX_k_medium_': (-1000, 0),
        'R_EX_nh4_medium_': (-1000, 0),
        'R_EX_fe3_e__mod1': (-1000, 0),
        'R_EX_zn2_e__mod1': (-1000, 0),
        'R_EX_ca2_e__mod1': (-1000, 0),
        'R_EX_so4_medium_': (-1000, 0),
        'R_EX_pi_medium_': (-1000, 0)
    }

    res = pFBA(model2,
               objective={"R_BM_total_Synth": 1},
               constraints=constraints)
    #res  = FBA(model2, objective={"R_BM_total_Synth": 1})

    for r, f in res.values.items():
        print(r + " --> " + str(f))
    print(res.values["R_EX_succ_medium_"])
    print(res.values["R_BM_total_Synth"])
    print(res.values["R_EX_glc_D_medium_"])