Exemplo n.º 1
0
def test_get_spectra():
    """
    Check grabbing spectra from the specDB

    Note:  This requires that specdb be installed..
    """
    try:
        import specdb
    except ImportError:
        assert True
        return
    # Check for specDB file
    if utils.load_specdb() is None:
        assert True
        return
    # Do it!
    frb180924 = FRB.by_name('FRB180924')
    host180924 = frb180924.grab_host()
    meta, xspec = host180924.get_metaspec()
    # Test
    assert isinstance(meta, Table)
    assert isinstance(xspec, xspectrum1d.XSpectrum1D)
    assert xspec.nspec == 1
    #
    meta, xspec = host180924.get_metaspec(instr='MUSE')
    # Test
    assert isinstance(xspec, xspectrum1d.XSpectrum1D)
    assert xspec.nspec == 1
    #
    meta, xspecs = host180924.get_metaspec(return_all=True)
    assert xspecs.nspec == 2
Exemplo n.º 2
0
def host_obj():
    # VLT
    photom = Table()
    photom['Name'] = ['G_TEST']
    photom['ra'] = 123.422
    photom['dec'] = 23.222
    # These are observed
    photom['LRISb_V'] = 25.86
    photom['LRISb_V_err'] = 0.25
    photom['GMOS_S_r'] = 23.61
    photom['GMOS_S_r_err'] = 0.15
    photom['LRISr_I'] = 23.09
    photom['LRISr_I_err'] = 0.1
    photom['NOT_z'] = 23.35
    photom['NOT_z_err'] = 0.3
    photom['NIRI_J'] = 21.75 + 0.91
    photom['NIRI_J_err'] = 0.2

    #

    host190613A = FRBHost(photom['ra'], photom['dec'],
                          FRB.by_name('FRB20121102'))
    host190613A.parse_photom(photom)
    host190613A.name = 'G_TEST'

    return host190613A
Exemplo n.º 3
0
def test_luminosity():
    frb121102 = FRB.by_name('FRB121102')
    host121102 = frbgalaxy.FRBHost.from_json(frb121102, data_path('test_frbhost.json'))
    Lum_Ha, Lum_Ha_err = host121102.calc_nebular_lum('Halpha')
    # Test
    assert Lum_Ha.unit == units.erg/units.s
    assert np.isclose(Lum_Ha.value, 2.93961853e+40)
Exemplo n.º 4
0
def test_read_frbhost():
    # This test will fail if the previous failed
    frb121102 = FRB.by_name('FRB121102')
    host121102 = frbgalaxy.FRBHost.from_json(frb121102, data_path('test_frbhost.json'))
    # Test
    assert host121102.frb.frb_name == 'FRB121102'
    assert np.isclose(host121102.morphology['b/a'], 0.25)
    assert host121102.vet_all()
Exemplo n.º 5
0
def test_parse_galfit():
    frb = FRB.by_name("FRB20121102A")
    host = frb.grab_host()
    galfit_outfile = resource_filename('frb',
                                       'tests/files/HG121102_galfit.fits')
    # Test two components
    host.parse_galfit(galfit_outfile, twocomponent=True)
    assert type(host.morphology['PA']) == np.ndarray
    assert len(host.morphology['PA']) == 2
    # Test a single component
    host.parse_galfit(galfit_outfile, twocomponent=False)
    assert type(host.morphology['PA']) == np.float64
Exemplo n.º 6
0
def test_luminosity():
    # This test will fail if the previous failed
    outfile = data_path('test_frbhost.json')
    frb121102 = FRB.by_name('FRB20121102A')
    host121102 = frbgalaxy.FRBHost.from_json(frb121102, outfile)
    Lum_Ha, Lum_Ha_err = host121102.calc_nebular_lum('Halpha')
    # Test
    assert Lum_Ha.unit == units.erg / units.s
    assert np.isclose(Lum_Ha.value, 2.9447660789951146e+40)

    # Remove
    os.remove(outfile)
Exemplo n.º 7
0
def test_frbhost():
    repeater_coord = SkyCoord('05h31m58.698s +33d8m52.59s',
                              frame='icrs')  # Use as host here
    # Instantiate
    frb121102 = FRB.by_name('FRB20121102A')
    host121102 = frbgalaxy.FRBHost(repeater_coord.ra.value,
                                   repeater_coord.dec.value, frb121102)
    # Redshift
    host121102.set_z(0.19273, 'spec', err=0.00008)
    # Add a few nebular lines  (Tendulkar+17)
    neb_lines = {}
    neb_lines['Halpha'] = 0.652e-16
    neb_lines['Halpha_err'] = 0.009e-16
    neb_lines['Halpha_Al'] = 0.622
    #
    neb_lines['Hbeta'] = 0.118e-16
    neb_lines['Hbeta_err'] = 0.011e-16
    neb_lines['Hbeta_Al'] = 0.941
    AV = 2.42
    # Deal with Galactic extinction
    for key in neb_lines.keys():
        if '_err' in key:
            continue
        if 'Al' in key:
            continue
        # Ingest
        host121102.neb_lines[key] = neb_lines[key] * 10**(
            neb_lines[key + '_Al'] * AV / 2.5)
        host121102.neb_lines[key + '_err'] = neb_lines[key + '_err'] * 10**(
            neb_lines[key + '_Al'] * AV / 2.5)
    # Vette
    for key in host121102.neb_lines.keys():
        if '_err' in key:
            continue
        assert key in defs.valid_neb_lines
    # Morphology
    host121102.morphology['reff_ang'] = 0.41
    host121102.morphology['reff_ang_err'] = 0.06
    #
    host121102.morphology['n'] = 2.2
    host121102.morphology['n_err'] = 1.5
    #
    host121102.morphology['b/a'] = 0.25
    host121102.morphology['b/a_err'] = 0.13
    # Vet
    assert host121102.vet_one('morphology')
    # Vet all
    assert host121102.vet_all()
    # Write
    outfile = data_path('test_frbhost.json')
    host121102.write_to_json(outfile=outfile)
Exemplo n.º 8
0
def test_offset():
    ifrb = FRB.by_name('FRB20121102A')
    host = ifrb.grab_host()

    ra_sig_source = host.positional_error['ra_source']
    ra_sig_astro = host.positional_error['ra_astrometric']
    dec_sig_source = host.positional_error['dec_source']
    dec_sig_astro = host.positional_error['dec_astrometric']

    host_ra_sig = np.sqrt(ra_sig_astro**2 + ra_sig_source**2)
    host_dec_sig = np.sqrt(dec_sig_astro**2 + dec_sig_source**2)

    ang_avg, avg_err, ang_best, best_err = frb_offsets.angular_offset(
        ifrb, host, gal_sig=(host_ra_sig, host_dec_sig))

    assert np.isclose(ang_best, 0.22687, rtol=1e-5)
Exemplo n.º 9
0
def test_named():
    frb121102 = FRB('FRB121102',
                    'J053158.7+330852.5',
                    558.1 * units.pc / units.cm**3,
                    z_frb=0.19273)
    # Error ellipse
    frb121102.set_ee(0.1, 0.1, 0., 95.)
    assert isinstance(frb121102.eellipse, dict)
    # Test writing
    frb121102.write_to_json()

    # Test load
    tst = FRB.from_json('FRB121102.json')

    # By name
    tst = FRB.by_name('FRB121102')
Exemplo n.º 10
0
def test_host_build():
    outfile = data_path('FRB20180924_host.json')
    if os.path.isfile(outfile):
        os.remove(outfile)

    # Requires a file on disk that is too slow to generate in CI
    pargs = build.parser(['Hosts', '--frb', 'FRB20180924'])
    frbs = pargs.frb.split(',')
    frbs = [ifrb.strip() for ifrb in frbs]

    out_path = data_path('')
    build_hosts.main(frbs,
                     options=pargs.options,
                     hosts_file=pargs.data_file,
                     lit_refs=pargs.lit_refs,
                     override=pargs.override,
                     out_path=out_path)

    # Check
    frb20180924 = FRB.by_name('FRB20180924')
    host = frbgalaxy.FRBHost.from_json(frb20180924, outfile)

    # Clean up
    os.remove(outfile)
Exemplo n.º 11
0
    new_pa_gal = pa_gal + dtheta * units.deg

    # x, y gal
    x_gal = -r.value * np.sin(new_pa_gal).value
    y_gal = r.value * np.cos(new_pa_gal).value

    # Offset
    ang_off = np.sqrt((xx - x_gal)**2 + (yy - y_gal)**2)
    p_xy = np.exp(-xx**2 / (2 * sig_a**2)) * np.exp(-yy**2 / (2 * sig_b**2))

    # Best offset
    best_off = r.value
    var_best = np.sum((ang_off - best_off)**2 * p_xy) / np.sum(p_xy)
    sig_best = np.sqrt(var_best)

    # Average over the grid
    avg_off = np.sum(ang_off * p_xy) / np.sum(p_xy)
    var_off = np.sum((ang_off - avg_off)**2 * p_xy) / np.sum(p_xy)
    sig_off = np.sqrt(var_off)

    # Return
    return avg_off, sig_off, best_off, sig_best


if __name__ == '__main__':

    from frb.frb import FRB
    ifrb = FRB.by_name('FRB200430')
    host = ifrb.grab_host()
    angular_offset(ifrb, host)
Exemplo n.º 12
0
def build_fg_181112(build_photom=False):
    """
    Data taken from Prochaska et al. 2019, Science, in press

    Args:
        build_photom (bool, optional):
            Generate the photometry table

    """
    # Coord from DES
    fg_coord = SkyCoord('J214923.89-525810.43', unit=(units.hourangle, units.deg))  # from DES
    frb181112 = FRB.by_name('FRB181112')

    # Instantiate
    fg_13_5 = frbgalaxy.FGGalaxy(fg_coord.ra.value, fg_coord.dec.value, '181112')
    fg_13_5.frb_coord = frb181112.coord

    # Redshift
    fg_13_5.set_z(0.36738, 'spec', err=7e-5)

    # Photometry
    photom_file = os.path.join(db_path, 'CRAFT', 'Prochaska2019', 'prochaska2019_photom.ascii')

    if build_photom:
        # DES
        # Grab the table (requires internet)
        search_r = 2 * units.arcsec
        des_srvy = des.DES_Survey(fg_coord, search_r)
        des_tbl = des_srvy.get_catalog(print_query=True)

        fg_13_5.parse_photom(des_tbl)
        # VLT -- Lochlan 2019-05-02
        # VLT -- Lochlan 2019-06-18
        fg_13_5.photom['VLT_g'] = 21.20
        fg_13_5.photom['VLT_g_err'] = 0.04
        fg_13_5.photom['VLT_I'] = 19.20
        fg_13_5.photom['VLT_I_err'] = 0.02
        # Build a Table
        photom = Table()
        photom['Name'] = ['FG181112_13_5']  # JXP internal name
        photom['ra'] = fg_13_5.coord.ra.value
        photom['dec'] = fg_13_5.coord.dec.value
        # Add in
        for key in fg_13_5.photom.keys():
            photom[key] = fg_13_5.photom[key]
        # Merge
        # Merge/write
        photom = frbphotom.merge_photom_tables(photom, photom_file)
        photom.write(photom_file, format=frbphotom.table_format, overwrite=True)
    # Either way read it
    fg_13_5.parse_photom(Table.read(photom_file, format=frbphotom.table_format))

    # Nebular lines
    fg_13_5.parse_ppxf(os.path.join(db_path, 'CRAFT', 'Prochaska2019', 'FG181112_13_5_FORS2_ppxf.ecsv'))

    # Derived quantities
    fg_13_5.calc_nebular_AV('Ha/Hb')

    # This will be an upper limit
    fg_13_5.calc_nebular_SFR('Ha')
    fg_13_5.derived['SFR_nebular_err'] = -999.

    # CIGALE
    fg_13_5.parse_cigale(os.path.join(db_path, 'CRAFT', 'Prochaska2019', 'FG181112_13_5_CIGALE.fits'))

    # Write
    path = resource_filename('frb', 'data/Galaxies/181112')
    fg_13_5.write_to_json(path=path)
Exemplo n.º 13
0
def _instantiate_intepolators(datafolder: str = DEFAULT_DATA_FOLDER,
                              dmfilename: str = None,
                              frb_name: str = "FRB180924") -> list:
    """
    Produce interpolator functions
    for key quantities required
    for the analysis.
    Args:
        datfolder(str, optional): Folder where the interpolation data files exist
        dmfilename(str, optional): file name (within datafolder) for the DM interpolation data.
        frb_name(str, optional): Assumes "FRB180924" by default.
    Returns:
        dm_interpolator (RegularGridInterpolator): DM(z, offset_kpc, log_mhalo)
        mean_interp (interp2d): <log_mhalo(log_mstar, z)> (based on SHMR)
        stddev_interp (interp2d): std.dev. log_mhalo(log_mstar, z) (based on SHMR)
        ang_dia_interp (interp1d): angular_diameter_distance(z) (default Repo cosmology)
    """

    # DM for a variety of halo parameters.
    if not dmfilename:
        dmfilename = "halo_dm_data.npz"
    dmdata = np.load(dmfilename)
    redshifts = dmdata['redshifts']
    offsets = dmdata['offsets']
    log_mhalos = dmdata['m_halo']
    dm_grid = dmdata['dm']

    dm_interpolator = RegularGridInterpolator((redshifts, offsets, log_mhalos),
                                              dm_grid,
                                              bounds_error=False,
                                              fill_value=0.)

    # Halo mass mean and variance from stellar mass
    frb = FRB.by_name(frb_name)

    realization_files = glob.glob(
        os.path.join(datafolder, "mhalo_realization_z*.npz"))
    realization_files.sort()

    # Define redshift grid
    zgrid = np.linspace(0, frb.z, 10)

    # Now initialize arrays to store mean and std.dev.
    mean_arrays = []
    stddev_arrays = []
    # Loop through files, compute mean & std.dev of log_mhalo for log_mstar
    for file in realization_files:
        loaded = np.load(file)
        log_mhalo = loaded['MHALO']
        mean_mhalo, _, stddev_mhalo = sigma_clipped_stats(log_mhalo,
                                                          sigma=20,
                                                          axis=1)
        mean_arrays.append(mean_mhalo)
        stddev_arrays.append(stddev_mhalo)

    # laoded is going to be from the last file in the loop. The first entry contains
    # a stellar mass array.
    log_mstar = loaded['MSTAR']
    mean_interp = interp2d(log_mstar,
                           zgrid,
                           np.array(mean_arrays),
                           bounds_error=False)
    stddev_interp = interp2d(log_mstar,
                             zgrid,
                             np.array(stddev_arrays),
                             bounds_error=False)

    # Angular diameter distance
    z = np.linspace(0, 7, 10000)
    ang_dia_dist = defs.frb_cosmo.angular_diameter_distance(z).to('kpc').value
    ang_dia_interp = interp1d(z,
                              ang_dia_dist,
                              bounds_error=False,
                              fill_value='extrapolate')

    # Return interpolators
    return dm_interpolator, mean_interp, stddev_interp, ang_dia_interp