Exemplo n.º 1
0
def mocked_load_data(datadir, pairs=[], timeframe='0m',
                     timerange=None, *args, **kwargs):
    hz = 0.1
    base = 0.001

    NEOBTC = [
        [
            tests_start_time.shift(minutes=(x * timeframe_in_minute)).int_timestamp * 1000,
            math.sin(x * hz) / 1000 + base,
            math.sin(x * hz) / 1000 + base + 0.0001,
            math.sin(x * hz) / 1000 + base - 0.0001,
            math.sin(x * hz) / 1000 + base,
            123.45
        ] for x in range(0, 500)]

    hz = 0.2
    base = 0.002
    LTCBTC = [
        [
            tests_start_time.shift(minutes=(x * timeframe_in_minute)).int_timestamp * 1000,
            math.sin(x * hz) / 1000 + base,
            math.sin(x * hz) / 1000 + base + 0.0001,
            math.sin(x * hz) / 1000 + base - 0.0001,
            math.sin(x * hz) / 1000 + base,
            123.45
        ] for x in range(0, 500)]

    pairdata = {'NEO/BTC': ohlcv_to_dataframe(NEOBTC, '1h', pair="NEO/BTC",
                                              fill_missing=True),
                'LTC/BTC': ohlcv_to_dataframe(LTCBTC, '1h', pair="LTC/BTC",
                                              fill_missing=True)}
    return pairdata
Exemplo n.º 2
0
def test_ohlcv_drop_incomplete(caplog):
    timeframe = '1d'
    ticks = [
        [
            1559750400000,  # 2019-06-04
            8.794e-05,  # open
            8.948e-05,  # high
            8.794e-05,  # low
            8.88e-05,  # close
            2255,  # volume (in quote currency)
        ],
        [
            1559836800000,  # 2019-06-05
            8.88e-05,
            8.942e-05,
            8.88e-05,
            8.893e-05,
            9911,
        ],
        [
            1559923200000,  # 2019-06-06
            8.891e-05,
            8.893e-05,
            8.875e-05,
            8.877e-05,
            2251
        ],
        [
            1560009600000,  # 2019-06-07
            8.877e-05,
            8.883e-05,
            8.895e-05,
            8.817e-05,
            123551
        ]
    ]
    caplog.set_level(logging.DEBUG)
    data = ohlcv_to_dataframe(ticks,
                              timeframe,
                              pair="UNITTEST/BTC",
                              fill_missing=False,
                              drop_incomplete=False)
    assert len(data) == 4
    assert not log_has("Dropping last candle", caplog)

    # Drop last candle
    data = ohlcv_to_dataframe(ticks,
                              timeframe,
                              pair="UNITTEST/BTC",
                              fill_missing=False,
                              drop_incomplete=True)
    assert len(data) == 3

    assert log_has("Dropping last candle", caplog)
Exemplo n.º 3
0
def test_ohlcv_fill_up_missing_data2(caplog):
    timeframe = '5m'
    ticks = [
        [
            1511686200000,  # 8:50:00
            8.794e-05,  # open
            8.948e-05,  # high
            8.794e-05,  # low
            8.88e-05,  # close
            2255,  # volume (in quote currency)
        ],
        [
            1511686500000,  # 8:55:00
            8.88e-05,
            8.942e-05,
            8.88e-05,
            8.893e-05,
            9911,
        ],
        [
            1511687100000,  # 9:05:00
            8.891e-05,
            8.893e-05,
            8.875e-05,
            8.877e-05,
            2251
        ],
        [
            1511687400000,  # 9:10:00
            8.877e-05,
            8.883e-05,
            8.895e-05,
            8.817e-05,
            123551
        ]
    ]

    # Generate test-data without filling missing
    data = ohlcv_to_dataframe(ticks,
                              timeframe,
                              pair="UNITTEST/BTC",
                              fill_missing=False)
    assert len(data) == 3
    caplog.set_level(logging.DEBUG)
    data2 = ohlcv_fill_up_missing_data(data, timeframe, "UNITTEST/BTC")
    assert len(data2) == 4
    # 3rd candle has been filled
    row = data2.loc[2, :]
    assert row['volume'] == 0
    # close should match close of previous candle
    assert row['close'] == data.loc[1, 'close']
    assert row['open'] == row['close']
    assert row['high'] == row['close']
    assert row['low'] == row['close']
    # Column names should not change
    assert (data.columns == data2.columns).all()

    assert log_has_re(
        f"Missing data fillup for UNITTEST/BTC: before: "
        f"{len(data)} - after: {len(data2)}.*", caplog)
Exemplo n.º 4
0
def test_ohlcv_to_dataframe(ohlcv_history_list, caplog):
    columns = ['date', 'open', 'high', 'low', 'close', 'volume']

    caplog.set_level(logging.DEBUG)
    # Test file with BV data
    dataframe = ohlcv_to_dataframe(ohlcv_history_list, '5m', pair="UNITTEST/BTC",
                                   fill_missing=True)
    assert dataframe.columns.tolist() == columns
    assert log_has('Converting candle (OHLCV) data to dataframe for pair UNITTEST/BTC.', caplog)
Exemplo n.º 5
0
def test_load_cached_data_for_updating(mocker, testdatadir) -> None:

    data_handler = get_datahandler(testdatadir, 'json')

    test_data = None
    test_filename = testdatadir.joinpath('UNITTEST_BTC-1m.json')
    with open(test_filename, "rt") as file:
        test_data = json.load(file)

    test_data_df = ohlcv_to_dataframe(test_data,
                                      '1m',
                                      'UNITTEST/BTC',
                                      fill_missing=False,
                                      drop_incomplete=False)
    # now = last cached item + 1 hour
    now_ts = test_data[-1][0] / 1000 + 60 * 60
    mocker.patch('arrow.utcnow', return_value=arrow.get(now_ts))

    # timeframe starts earlier than the cached data
    # should fully update data
    timerange = TimeRange('date', None, test_data[0][0] / 1000 - 1, 0)
    data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m',
                                                    timerange, data_handler)
    assert data.empty
    assert start_ts == test_data[0][0] - 1000

    # timeframe starts in the center of the cached data
    # should return the chached data w/o the last item
    timerange = TimeRange('date', None, test_data[0][0] / 1000 + 1, 0)
    data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m',
                                                    timerange, data_handler)

    assert_frame_equal(data, test_data_df.iloc[:-1])
    assert test_data[-2][0] <= start_ts < test_data[-1][0]

    # timeframe starts after the chached data
    # should return the chached data w/o the last item
    timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 100, 0)
    data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m',
                                                    timerange, data_handler)
    assert_frame_equal(data, test_data_df.iloc[:-1])
    assert test_data[-2][0] <= start_ts < test_data[-1][0]

    # no datafile exist
    # should return timestamp start time
    timerange = TimeRange('date', None, now_ts - 10000, 0)
    data, start_ts = _load_cached_data_for_updating('NONEXIST/BTC', '1m',
                                                    timerange, data_handler)
    assert data.empty
    assert start_ts == (now_ts - 10000) * 1000

    # no datafile exist, no timeframe is set
    # should return an empty array and None
    data, start_ts = _load_cached_data_for_updating('NONEXIST/BTC', '1m', None,
                                                    data_handler)
    assert data.empty
    assert start_ts is None
Exemplo n.º 6
0
def test_datesarray_to_datetimearray(ohlcv_history_list):
    dataframes = ohlcv_to_dataframe(ohlcv_history_list, "5m", pair="UNITTEST/BTC",
                                    fill_missing=True)
    dates = datesarray_to_datetimearray(dataframes['date'])

    assert isinstance(dates[0], datetime.datetime)
    assert dates[0].year == 2017
    assert dates[0].month == 11
    assert dates[0].day == 26
    assert dates[0].hour == 8
    assert dates[0].minute == 50

    date_len = len(dates)
    assert date_len == 2
Exemplo n.º 7
0
    def refresh_latest_ohlcv(self, pair_list: List[Tuple[str, str]]) -> List[Tuple[str, List]]:
        """
        Refresh in-memory OHLCV asynchronously and set `_klines` with the result
        Loops asynchronously over pair_list and downloads all pairs async (semi-parallel).
        Only used in the dataprovider.refresh() method.
        :param pair_list: List of 2 element tuples containing pair, interval to refresh
        :return: TODO: return value is only used in the tests, get rid of it
        """
        logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))

        input_coroutines = []

        # Gather coroutines to run
        for pair, timeframe in set(pair_list):
            if (not ((pair, timeframe) in self._klines)
                    or self._now_is_time_to_refresh(pair, timeframe)):
                input_coroutines.append(self._async_get_candle_history(pair, timeframe))
            else:
                logger.debug(
                    "Using cached candle (OHLCV) data for pair %s, timeframe %s ...",
                    pair, timeframe
                )

        results = asyncio.get_event_loop().run_until_complete(
            asyncio.gather(*input_coroutines, return_exceptions=True))

        # handle caching
        for res in results:
            if isinstance(res, Exception):
                logger.warning("Async code raised an exception: %s", res.__class__.__name__)
                continue
            pair = res[0]
            timeframe = res[1]
            ticks = res[2]
            # keeping last candle time as last refreshed time of the pair
            if ticks:
                self._pairs_last_refresh_time[(pair, timeframe)] = ticks[-1][0] // 1000
            # keeping parsed dataframe in cache
            self._klines[(pair, timeframe)] = ohlcv_to_dataframe(
                ticks, timeframe, pair=pair, fill_missing=True,
                drop_incomplete=self._ohlcv_partial_candle)

        return results
Exemplo n.º 8
0
def _download_pair_history(datadir: Path,
                           exchange: Exchange,
                           pair: str, *,
                           timeframe: str = '5m',
                           timerange: Optional[TimeRange] = None,
                           data_handler: IDataHandler = None) -> bool:
    """
    Download latest candles from the exchange for the pair and timeframe passed in parameters
    The data is downloaded starting from the last correct data that
    exists in a cache. If timerange starts earlier than the data in the cache,
    the full data will be redownloaded

    Based on @Rybolov work: https://github.com/rybolov/freqtrade-data

    :param pair: pair to download
    :param timeframe: Timeframe (e.g "5m")
    :param timerange: range of time to download
    :return: bool with success state
    """
    data_handler = get_datahandler(datadir, data_handler=data_handler)

    try:
        logger.info(
            f'Download history data for pair: "{pair}", timeframe: {timeframe} '
            f'and store in {datadir}.'
        )

        # data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
        data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
                                                        data_handler=data_handler)

        logger.debug("Current Start: %s",
                     f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
        logger.debug("Current End: %s",
                     f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')

        # Default since_ms to 30 days if nothing is given
        new_data = exchange.get_historic_ohlcv(pair=pair,
                                               timeframe=timeframe,
                                               since_ms=since_ms if since_ms else
                                               int(arrow.utcnow().shift(
                                                   days=-30).float_timestamp) * 1000
                                               )
        # TODO: Maybe move parsing to exchange class (?)
        new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
                                           fill_missing=False, drop_incomplete=True)
        if data.empty:
            data = new_dataframe
        else:
            data = data.append(new_dataframe)

        logger.debug("New  Start: %s",
                     f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
        logger.debug("New End: %s",
                     f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')

        data_handler.ohlcv_store(pair, timeframe, data=data)
        return True

    except Exception as e:
        logger.error(
            f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}. '
            f'Error: {e}'
        )
        return False
Exemplo n.º 9
0
def _download_pair_history(pair: str, *,
                           datadir: Path,
                           exchange: Exchange,
                           timeframe: str = '5m',
                           process: str = '',
                           new_pairs_days: int = 30,
                           data_handler: IDataHandler = None,
                           timerange: Optional[TimeRange] = None,
                           candle_type: CandleType,
                           erase: bool = False,
                           ) -> bool:
    """
    Download latest candles from the exchange for the pair and timeframe passed in parameters
    The data is downloaded starting from the last correct data that
    exists in a cache. If timerange starts earlier than the data in the cache,
    the full data will be redownloaded

    Based on @Rybolov work: https://github.com/rybolov/freqtrade-data

    :param pair: pair to download
    :param timeframe: Timeframe (e.g "5m")
    :param timerange: range of time to download
    :param candle_type: Any of the enum CandleType (must match trading mode!)
    :param erase: Erase existing data
    :return: bool with success state
    """
    data_handler = get_datahandler(datadir, data_handler=data_handler)

    try:
        if erase:
            if data_handler.ohlcv_purge(pair, timeframe, candle_type=candle_type):
                logger.info(f'Deleting existing data for pair {pair}, {timeframe}, {candle_type}.')

        logger.info(
            f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe}, '
            f'candle type: {candle_type} and store in {datadir}.'
        )

        data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
                                                        data_handler=data_handler,
                                                        candle_type=candle_type)

        logger.debug("Current Start: %s",
                     f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
        logger.debug("Current End: %s",
                     f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')

        # Default since_ms to 30 days if nothing is given
        new_data = exchange.get_historic_ohlcv(pair=pair,
                                               timeframe=timeframe,
                                               since_ms=since_ms if since_ms else
                                               arrow.utcnow().shift(
                                                   days=-new_pairs_days).int_timestamp * 1000,
                                               is_new_pair=data.empty,
                                               candle_type=candle_type,
                                               )
        # TODO: Maybe move parsing to exchange class (?)
        new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
                                           fill_missing=False, drop_incomplete=True)
        if data.empty:
            data = new_dataframe
        else:
            # Run cleaning again to ensure there were no duplicate candles
            # Especially between existing and new data.
            data = clean_ohlcv_dataframe(concat([data, new_dataframe], axis=0), timeframe, pair,
                                         fill_missing=False, drop_incomplete=False)

        logger.debug("New  Start: %s",
                     f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
        logger.debug("New End: %s",
                     f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')

        data_handler.ohlcv_store(pair, timeframe, data=data, candle_type=candle_type)
        return True

    except Exception:
        logger.exception(
            f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}.'
        )
        return False