Exemplo n.º 1
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        tf_res = timeframe_to_minutes(self.timeframe) * 5
        df_res = resample_to_interval(dataframe, tf_res)
        df_res['sma'] = ta.SMA(df_res, 50, price='close')
        dataframe = resampled_merge(dataframe, df_res, fill_na=True)
        dataframe['resample_sma'] = dataframe[f'resample_{tf_res}_sma']

        dataframe['ema_high'] = ta.EMA(dataframe, timeperiod=5, price='high')
        dataframe['ema_close'] = ta.EMA(dataframe, timeperiod=5, price='close')
        dataframe['ema_low'] = ta.EMA(dataframe, timeperiod=5, price='low')
        stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']
        dataframe['adx'] = ta.ADX(dataframe)
        dataframe['cci'] = ta.CCI(dataframe, timeperiod=20)
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
        dataframe['mfi'] = ta.MFI(dataframe)

        # required for graphing
        bollinger = qtpylib.bollinger_bands(dataframe['close'],
                                            window=20,
                                            stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['bb_middleband'] = bollinger['mid']

        return dataframe
Exemplo n.º 2
0
def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
    np.random.seed(42)
    tf_mins = timeframe_to_minutes(timeframe)

    base = np.random.normal(20, 2, size=size)

    date = pd.date_range(start, periods=size, freq=f'{tf_mins}min', tz='UTC')
    df = pd.DataFrame({
        'date': date,
        'open': base,
        'high': base + np.random.normal(2, 1, size=size),
        'low': base - np.random.normal(2, 1, size=size),
        'close': base + np.random.normal(0, 1, size=size),
        'volume': np.random.normal(200, size=size)
    })
    df = df.dropna()
    return df