Exemplo n.º 1
0
 def test_smoke_ccc(self):
     """Smoke test for ccc MI."""
     for cop in [True, False]:
         for cat in [None, categories]:
             # tensor-based
             c = GCMIEstimator(mi_type='ccc', tensor=True, copnorm=cop)
             mi_t = c.estimate(x, y_c, z=z_c, categories=cat)
             # vector-based
             c = GCMIEstimator(mi_type='ccc', tensor=False, copnorm=cop)
             mi_v = c.estimate(x, y_c, z=z_c, categories=cat)
             np.testing.assert_array_almost_equal(mi_t, mi_v)
Exemplo n.º 2
0
 def test_support_dim(self):
     """Test the support for different dimensions."""
     y = np.random.rand(100)
     c = GCMIEstimator(mi_type='cc')
     # 1d
     x = np.random.rand(100)
     c = GCMIEstimator(mi_type='cc')
     mi = c.estimate(x, y)
     assert mi.shape == (1, 1)
     # 2d
     x = np.random.rand(1, 100)
     mi = c.estimate(x, y)
     assert mi.shape == (1, 1)
     # Nd
     x = np.random.rand(4, 5, 6, 1, 100)
     mi = c.estimate(x, y)
     assert mi.shape == (1, 4, 5, 6)
Exemplo n.º 3
0
 def test_functional_cc(self):
     """Functional test for cc MI."""
     # build the testing data
     x = np.random.rand(n_times, n_mv, n_samples)
     y = np.random.normal(size=(1, 1, n_samples,))
     x[sl_effect, :, :] += y
     y = np.tile(y, (n_times, 1, 1))
     # functional test
     for cop in [True, False]:
         for imp in [True, False]:
             c = GCMIEstimator(mi_type='cc', tensor=imp, copnorm=cop)
             mi = c.estimate(x, y)
             self._compare_effects(effect, mi)
Exemplo n.º 4
0
 def test_functional_cd(self):
     """Functional test for cd MI."""
     # build the testing data
     x = np.random.rand(n_times, n_mv, n_samples)
     x[sl_effect, :, 0:50] += 10.
     x[sl_effect, :, 50::] -= 10.
     y = np.array([0] * 50 + [1] * 50)
     # functional test
     for cop in [True, False]:
         for imp in [True, False]:
             c = GCMIEstimator(mi_type='cd', tensor=imp, copnorm=cop)
             mi = c.estimate(x, y)
             self._compare_effects(effect, mi)
Exemplo n.º 5
0
 def test_functional_ccd(self):
     """Functional test for ccd MI."""
     # build the testing data
     x = np.random.rand(n_times, n_mv, n_samples)
     y_pos = np.random.normal(size=(1, 1, 50))
     y_neg = np.random.normal(size=(1, 1, 50))
     x[sl_effect, :, 0:50] += y_pos
     x[sl_effect, :, 50::] -= y_neg
     y = np.tile(np.concatenate((y_pos, y_neg), axis=2), (n_times, 1, 1))
     z = np.array([0] * 50 + [1] * 50)
     # functional test
     for cop in [True, False]:
         for imp in [True, False]:
             c = GCMIEstimator(mi_type='ccd', tensor=imp, copnorm=cop)
             mi = c.estimate(x, y, z=z)
             self._compare_effects(effect, mi)