Exemplo n.º 1
0
 def neh_plus(N, m):
     k = 1
     W = [[sum(x), x] for x in N]
     pi = []
     pi_star = []
     W.sort(key=lambda x: x[0])
     while len(W) != 0:
         j = W[len(W) - 1][1]
         pi_star.append(j)
         for l in range(k):
             pi.insert(l, j)
             if FSPService.loss_function(pi, m) < FSPService.loss_function(pi_star, m):
                 pi_star = cp.copy(pi)
             del pi[l]
         pi = cp.copy(pi_star)
         del W[len(W) - 1]
         if k > 1:
             x = NEH.select_x(pi, m, j)
             pi.remove(x)
             for l in range(k):
                 pi.insert(l, x)
                 if FSPService.loss_function(pi, m) < FSPService.loss_function(pi_star, m):
                     pi_star = cp.copy(pi)
                 del pi[l]
             pi = cp.copy(pi_star)
         k += 1
     return FSPService.loss_function(pi_star, m), pi_star
Exemplo n.º 2
0
 def bound_1(Pi, N, m, data) -> int:
     max_val = -1
     E = [sum(col) for col in zip(*N)]
     for i in range(1, m + 1):
         Ci = service.loss_function(Pi, i)
         if Ci + E[i - 1] > max_val:
             max_val = Ci + E[i - 1]
     return max_val
Exemplo n.º 3
0
 def neh(N, m):
     k = 1
     W = [[sum(x), x] for x in N]
     pi = []
     pi_star = []
     W.sort(key=lambda x: x[0])
     while len(W) != 0:
         j = W[len(W) - 1][1]
         pi_star.append(j)
         for l in range(0, k):
             pi.insert(l, j)
             if FSPService.loss_function(pi, m) < FSPService.loss_function(pi_star, m):
                 pi_star = cp.copy(pi)
             del pi[l]
         pi = cp.copy(pi_star)
         k += 1
         del W[len(W) - 1]
     return FSPService.loss_function(pi_star, m), pi
Exemplo n.º 4
0
 def recursive(S, C_max, leaf, best, m):
     if len(S) > 0:
         for i in S:
             s = copy.copy(S)
             s.remove(i)
             l = copy.copy(leaf)
             l.append(i)
             recursive(s, C_max, l, best, m)
     else:
         C_tmp = FSPService.loss_function(leaf, m)
         if C_max[0] > C_tmp:
             C_max[0] = C_tmp
             best[0] = leaf
Exemplo n.º 5
0
 def select_x(pi: [], m, j):
     x = None
     C_max = math.inf
     for i in range(len(pi)):
         if pi[i] == j:
             continue
         tmp_task = pi[i]
         del pi[i]
         tmp_C_max = FSPService.loss_function(pi, m)
         if tmp_C_max < C_max:
             C_max = tmp_C_max
             x = tmp_task
         pi.insert(i, tmp_task)
     return x
Exemplo n.º 6
0
 def procedure(J, n, m, L, T, reduce_temp_fcn, arg_reduce_temp,
               init_solution_fcn, move_fcn):
     T_end = 0.05
     pi_new = None
     pi_star = init_solution_fcn(J, m)
     pi = init_solution_fcn(J, m)
     while T > T_end:
         for k in range(L):
             i = random.randint(0, n - 1)
             j = random.randint(0, n - 1)
             pi_new = move_fcn(pi_star, i, j)
             delta_C_max = FSPService.loss_function(
                 pi, m) - FSPService.loss_function(pi_new, m)
             if delta_C_max > 0:
                 r = random.uniform(0, 1)
                 if r >= np.e**(delta_C_max / T):
                     pi_new = cp.copy(pi)
             pi = pi_new
             if FSPService.loss_function(pi, m) < FSPService.loss_function(
                     pi_star, m):
                 pi_star = cp.copy(pi)
         T = reduce_temp_fcn(T, arg_reduce_temp)
     print(FSPService.loss_function(pi, m))
Exemplo n.º 7
0
 def BnB(j, N_, Pi_):
     Pi = copy.deepcopy(Pi_)
     N = copy.deepcopy(N_)
     Pi.append(j)
     N.remove(j)
     if len(N) > 0:
         LB = lb(Pi, N, m, data)
         pass
         if LB <= UB[0]:
             for i in N:
                 BnB(i, N, Pi)
     else:
         Cmax = service.loss_function(Pi, m)
         if Cmax < UB[0]:
             UB[0] = Cmax
             Pi_star[0] = Pi
Exemplo n.º 8
0
    def bound_3(Pi, N, m, data):
        max_val = -1
        E = [sum(col) for col in zip(*N)]

        for i in range(1, m + 1):
            Ci = service.loss_function(Pi, i)
            sum_k = 0
            for k in range(i, m):
                min_val = math.inf
                for j in range(len(N)):
                    if N[j][k] < min_val:
                        min_val = N[j][k]
                sum_k += min_val
            if Ci + E[i - 1] + sum_k > max_val:
                max_val = Ci + E[i - 1] + sum_k

        return max_val
Exemplo n.º 9
0
    def bound_4(Pi, N, m, data):
        max_val = -1
        E = [sum(col) for col in zip(*N)]

        for i in range(m):
            Ci = service.loss_function(Pi, i + 1)
            min_val = math.inf
            # sum_k = None
            for j in range(len(N)):
                sum_k = 0
                for k in range(i + 1, m):
                    sum_k += N[j][k]

                min_val = min(min_val, sum_k)

            if Ci + E[i] + min_val > max_val:
                max_val = Ci + E[i] + min_val

        return max_val
Exemplo n.º 10
0
    def procedure(self):
        population = self.generate_start_population(self.n)

        for j in range(self.epoch):

            new_population = [] + cp.copy(population)
            parents = Genetic.selection(population)
            # selection
            for pair in parents:
                child = Genetic.crossover(pair[1][0], pair[0][0])
                new_population.append([child, self.calc_value(child)])
            # crossover
            random_mutation_quantity = random.randint(1, 5)
            for i in range(random_mutation_quantity):
                mutant = Genetic.mutation(random.choice(population)[0])
                new_population.append([mutant, self.calc_value(mutant)])
            new_population.sort(key=lambda x: -x[1])
            population = new_population[:len(population)]

        return FSPService.loss_function(population[0][0],
                                        self.m), population[0][0]
Exemplo n.º 11
0
 def ub_2(data, m):
     return service.loss_function(data, m)
Exemplo n.º 12
0
                        BnB(i, N, Pi)
            else:
                Cmax = service.loss_function(Pi, m)
                if Cmax < UB[0]:
                    UB[0] = Cmax
                    Pi_star[0] = Pi

        Pi = []
        for j in N:
            BnB(j, N, Pi)

        return UB, Pi_star


if __name__ == '__main__':
    _, m, data = service.read_data(
        'D:\Programming\python\SPD\\fsp\data\\data002.txt')
    Lb_functions = [
        BranchAndBounds.bound_1, BranchAndBounds.bound_2,
        BranchAndBounds.bound_3, BranchAndBounds.bound_4
    ]
    Ub_functions = [BranchAndBounds.ub_1, BranchAndBounds.ub_2]
    for lb in Lb_functions:
        for Ub_functions in Ub_functions:
            """
            Kombinacja funkcji
            [Cmax], [perm] = BranchAndBounds.find_c_max(data, m, ub, lb)
            print(Cmax)
   
            """
            pass
Exemplo n.º 13
0
 def calc_value(self, J):
     return 1 / (FSPService.loss_function(J, self.m) / self.normalizer)
Exemplo n.º 14
0
 def __init__(self, path_to_data, epoch):
     self.n, self.m, self.data = NEHService.read_data_by_rows(path_to_data)
     self.epoch = epoch
     self.normalizer = FSPService.loss_function(self.data, self.m) / 2
Exemplo n.º 15
0
        return T - x

    @staticmethod
    def reduce_temperature_geometric(T, alpha):
        return T * alpha

    @staticmethod
    def reduce_temperature_log(T, it):
        b = it + 1
        return T / np.log(b)


if __name__ == '__main__':
    filepath = 'D:\Programming\python\SPD\\neh\dane\\ta003.txt'
    n, m, data = NEHService.read_data_by_rows(filepath)
    natural_c_max = FSPService.loss_function(data, m)
    print(f'natural Cmax = {natural_c_max}')
    L = [10**2, 10**3, 10**4]
    T_0 = [math.sqrt(n), n, n**2]
    temp_reduce_fcn_arr = [
        SimulatedAnnealing.reduce_temperature_linear,
        SimulatedAnnealing.reduce_temperature_geometric,
        SimulatedAnnealing.reduce_temperature_log
    ]
    x = [T_0[0] / (10**3), T_0[0] / (10**4), T_0[0] / (10**5)]
    alpha = [.97, .95, .9]
    init_solution_fcn_arr = [
        SimulatedAnnealing.init_solution_1, SimulatedAnnealing.init_solution_2,
        SimulatedAnnealing.init_solution_3
    ]
    move_fcn_arr = [
Exemplo n.º 16
0
class BruteForce:
    @staticmethod
    def find_c_max(data, m):
        def recursive(S, C_max, leaf, best, m):
            if len(S) > 0:
                for i in S:
                    s = copy.copy(S)
                    s.remove(i)
                    l = copy.copy(leaf)
                    l.append(i)
                    recursive(s, C_max, l, best, m)
            else:
                C_tmp = FSPService.loss_function(leaf, m)
                if C_max[0] > C_tmp:
                    C_max[0] = C_tmp
                    best[0] = leaf

        tmp = [math.inf]
        leafs = []
        perm = [[]]
        recursive(data, tmp, leafs, perm, m)
        return tmp[0], perm[0]


_, m, data = FSPService.read_data(
    'D:\Programming\python\SPD\\fsp\data\data003.txt')
Cmax, perm = BruteForce.find_c_max(data, m)
print(Cmax)
print(perm)