def main(): fname_in = sys.argv[1] din = GetData(fname_in, 'a') time = ap.num2date(getattr(din, T_NAME)[:]) lon = din.lon[:] lat = din.lat[:] sat = din.satname[:] nrows = len(time) nt, ny, nx = getattr(din, H_NAME).shape # i,j,k = t,y,x RR = np.empty((nt,ny,nx), 'f8') * np.nan SS = np.empty((nt,ny,nx), 'f8') * np.nan print 'processing time series:' isfirst = True # iterate over every grid cell (all times): i,j = y,x #----------------------------------------------------------------- for i in xrange(ny): for j in xrange(nx): print 'time series of grid-cell:', i, j dh = getattr(din, H_NAME)[:nrows,i,j] dg = getattr(din, G_NAME)[:nrows,i,j] dh_cor = np.zeros_like(dh) if np.alltrue(np.isnan(dh)): continue #--------------------------------------------------------- # pull and correct a chunk of the array at a time for s in np.unique(sat): k = np.where(sat == s) dh_cor[k], R, S = ap.backscatter_corr(dh[k], dg[k], diff=DIFF, robust=True) RR[k,i,j] = R SS[k,i,j] = S #--------------------------------------------------------- if PLOT_TS: dh_cor = ap.referenced(dh_cor, to='first') dh = ap.referenced(dh, to='first') dg = ap.referenced(dg, to='first') fig = plot_rs(time, RR[:,i,j], SS[:,i,j]) for s in np.unique(sat): k = np.where(sat == s) r, s = np.mean(RR[k,i,j]), np.mean(SS[k,i,j]) try: fig = plot_ts(time[k], lon[j], lat[i], dh_cor[k], dh[k], dg[k], r, s, diff=DIFF) except: print 'something wrong with ploting!' print 'dh:', dh print 'dg:', dg if fig is None: continue plt.show() # save one TS per grid cell at a time #--------------------------------------------------------- if not SAVE_TO_FILE: continue if isfirst: # open or create output file isfirst = False atom = tb.Atom.from_type('float64', dflt=np.nan) filters = tb.Filters(complib='zlib', complevel=9) try: c1 = din.file.create_carray('/', SAVE_AS_NAME, atom, (nt,ny,nx), '', filters) except: c1 = din.file.getNode('/', SAVE_AS_NAME) c2 = din.file.create_carray('/', R_NAME, atom, (nt,ny,nx), '', filters) c3 = din.file.create_carray('/', S_NAME, atom, (nt,ny,nx), '', filters) c1[:,i,j] = dh_cor if SAVE_TO_FILE: c2[:] = RR c3[:] = SS if PLOT_MAP: RR = RR[0] # change accordingly SS = SS[0] plot_map(lon, lat, np.abs(RR), BBOX, MASK_FILE, mres=1, vmin=0, vmax=1) plt.title('Correlation Coefficient, R') plt.savefig('map_r.png') plot_map(lon, lat, SS, BBOX, MASK_FILE, mres=1, vmin=-0.2, vmax=0.7) plt.title('Correlation Gradient, S') plt.savefig('map_s.png') plt.show() din.file.close() if SAVE_TO_FILE: print 'out file -->', fname_in
def main(): fname_in = sys.argv[1] din = GetData(fname_in, 'a') time = ap.num2date(getattr(din, T_NAME)[:]) lon = din.lon[:] lat = din.lat[:] nrows = len(time) nt, ny, nx = getattr(din, H_NAME).shape # i,j,k = t,y,x RR = np.empty((nt,ny,nx), 'f8') * np.nan SS = np.empty((nt,ny,nx), 'f8') * np.nan if TINT: intervals = [ap.year2date(tt) for tt in INTERVALS] if TINT: print 'using time-interval correlation' elif TVAR: print 'using time-variable correlation' else: print 'using constant correlation' print 'processing time series:' isfirst = True # iterate over every grid cell (all times): i,j = y,x #----------------------------------------------------------------- for i in xrange(ny): for j in xrange(nx): print 'time series of grid-cell:', i, j dh = getattr(din, H_NAME)[:nrows,i,j] dg = getattr(din, G_NAME)[:nrows,i,j] if np.alltrue(np.isnan(dh)): continue #--------------------------------------------------------- if TINT: # satellite-dependent R and S dh_cor, RR[:,i,j], SS[:,i,j] = \ ap.backscatter_corr3(dh, dg, time, intervals, diff=DIFF, robust=True) elif TVAR: # time-varying R and S dh_cor, RR[:,i,j], SS[:,i,j] = \ ap.backscatter_corr2(dh, dg, diff=DIFF, robust=True, npts=NPTS) else: # constant R and S dh_cor, RR[:,i,j], SS[:,i,j] = \ ap.backscatter_corr(dh, dg, diff=DIFF, robust=True) #--------------------------------------------------------- # plot figures if PLOT_TS: dh_cor = ap.referenced(dh_cor, to='first') dh = ap.referenced(dh, to='first') dg = ap.referenced(dg, to='first') k, = np.where(~np.isnan(RR[:,i,j])) r = np.mean(RR[k,i,j]) s = np.mean(SS[k,i,j]) fig = plot_rs(time, RR[:,i,j], SS[:,i,j]) fig = plot_ts(time, lon[j], lat[i], dh_cor, dh, dg, r, s, diff=DIFF) if fig is None: continue plt.show() # save one TS per grid cell at a time #--------------------------------------------------------- if not SAVE_TO_FILE: continue if isfirst: # open or create output file isfirst = False atom = tb.Atom.from_type('float64', dflt=np.nan) filters = tb.Filters(complib='zlib', complevel=9) c1 = din.file.createCArray('/', SAVE_AS_NAME, atom, (nt,ny,nx), '', filters) c2 = din.file.createCArray('/', R_NAME, atom, (nt,ny,nx), '', filters) c3 = din.file.createCArray('/', S_NAME, atom, (nt,ny,nx), '', filters) c1[:,i,j] = dh_cor if SAVE_TO_FILE: c2[:] = RR c3[:] = SS if PLOT_MAP: if TVAR: # 3D -> 2D RR = np.mean(RR[~np.isnan(RR)], axis=0) SS = np.mean(SS[~np.isnan(SS)], axis=0) plot_map(lon, lat, np.abs(RR), BBOX, MFILE, mres=1, vmin=0, vmax=1) plt.title('Correlation Coefficient, R') plt.savefig('map_r.png') plot_map(lon, lat, SS, BBOX, MFILE, mres=1, vmin=-0.2, vmax=0.7) plt.title('Correlation Gradient, S') plt.savefig('map_s.png') plt.show() din.file.close() if SAVE_TO_FILE: print 'out file -->', fname_in
def main(): fname_in = sys.argv[1] din = GetData(fname_in, 'a') time = ap.num2date(getattr(din, T_NAME)[:]) lon = din.lon[:] lat = din.lat[:] nrows = len(time) nt, ny, nx = getattr(din, H_NAME).shape # i,j,k = t,y,x RR = np.empty((nt, ny, nx), 'f8') * np.nan SS = np.empty((nt, ny, nx), 'f8') * np.nan if TINT: intervals = [ap.year2date(tt) for tt in INTERVALS] if TINT: print 'using time-interval correlation' elif TVAR: print 'using time-variable correlation' else: print 'using constant correlation' print 'processing time series:' isfirst = True # iterate over every grid cell (all times): i,j = y,x #----------------------------------------------------------------- for i in xrange(ny): for j in xrange(nx): print 'time series of grid-cell:', i, j dh = getattr(din, H_NAME)[:nrows, i, j] dg = getattr(din, G_NAME)[:nrows, i, j] if np.alltrue(np.isnan(dh)): continue #--------------------------------------------------------- if TINT: # satellite-dependent R and S dh_cor, RR[:,i,j], SS[:,i,j] = \ ap.backscatter_corr3(dh, dg, time, intervals, diff=DIFF, robust=True) elif TVAR: # time-varying R and S dh_cor, RR[:,i,j], SS[:,i,j] = \ ap.backscatter_corr2(dh, dg, diff=DIFF, robust=True, npts=NPTS) else: # constant R and S dh_cor, RR[:,i,j], SS[:,i,j] = \ ap.backscatter_corr(dh, dg, diff=DIFF, robust=True) #--------------------------------------------------------- # plot figures if PLOT_TS: dh_cor = ap.referenced(dh_cor, to='first') dh = ap.referenced(dh, to='first') dg = ap.referenced(dg, to='first') k, = np.where(~np.isnan(RR[:, i, j])) r = np.mean(RR[k, i, j]) s = np.mean(SS[k, i, j]) fig = plot_rs(time, RR[:, i, j], SS[:, i, j]) fig = plot_ts(time, lon[j], lat[i], dh_cor, dh, dg, r, s, diff=DIFF) if fig is None: continue plt.show() # save one TS per grid cell at a time #--------------------------------------------------------- if not SAVE_TO_FILE: continue if isfirst: # open or create output file isfirst = False atom = tb.Atom.from_type('float64', dflt=np.nan) filters = tb.Filters(complib='zlib', complevel=9) c1 = din.file.createCArray('/', SAVE_AS_NAME, atom, (nt, ny, nx), '', filters) c2 = din.file.createCArray('/', R_NAME, atom, (nt, ny, nx), '', filters) c3 = din.file.createCArray('/', S_NAME, atom, (nt, ny, nx), '', filters) c1[:, i, j] = dh_cor if SAVE_TO_FILE: c2[:] = RR c3[:] = SS if PLOT_MAP: if TVAR: # 3D -> 2D RR = np.mean(RR[~np.isnan(RR)], axis=0) SS = np.mean(SS[~np.isnan(SS)], axis=0) plot_map(lon, lat, np.abs(RR), BBOX, MFILE, mres=1, vmin=0, vmax=1) plt.title('Correlation Coefficient, R') plt.savefig('map_r.png') plot_map(lon, lat, SS, BBOX, MFILE, mres=1, vmin=-0.2, vmax=0.7) plt.title('Correlation Gradient, S') plt.savefig('map_s.png') plt.show() din.file.close() if SAVE_TO_FILE: print 'out file -->', fname_in