Exemplo n.º 1
0
        'Please input the classweight of the decision tree(** ** ** **):')
    classweight = [int(item) for item in classweight.split()]
    wei = []
    if classweight[0] == 0:
        wei.append('balanced')
    elif classweight[0] == 1028:
        wei.append(1028)
    else:
        wei.append({0: classweight[0], 1: classweight[1]})
    if classweight[2] == 0:
        wei.append('balanced')
    elif classweight[2] == 1028:
        wei.append(1028)
    else:
        wei.append({0: classweight[2], 1: classweight[3]})
    data, label, timeind = function.load_data('f60-23-1119.xlsx', N)
    data2, label2, timeind2 = function.load_data('f10-23-1119.xlsx', N)

    N = len(data)
    # # data, label, timeind = function.createdataset(data, label, timeind, 0.5, N, 5)
    # # # data2, label2 = function.createdataset(data2, label2, 0.5, N, 2)
    # indall = [i for i in range(23)]
    # indall = set(indall)
    # # indfew = [4,5,6,8,10,12,14,15,16]
    # indfew = [12]
    # # indfew = []
    # indfew = set(indfew)
    # indroi = indall - indfew
    # indroi = list(indroi)
    # # # indroi = [0,1,2,7,9,11,13,14,21]
    # ind = np.array(indroi)
Exemplo n.º 2
0
import numpy as np
from function import load_data
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
"""
ロジスティック回帰を用いて,音声ファイルを2クラスに分類する
10-foldクロスバリデーションより、分類の精度をみる
ランダムに2クラス分類を行った場合と比較する

"""

csv_file_path = r"path/to/data.csv"
x_data, y_data = load_data(csv_file_path)

x_data = np.array(x_data)
y_data = np.array(y_data)

# データを10分割する
n_fold = 10
k_fold = KFold(n_fold, shuffle=True)

accuracy_list = []
train_accuracy_list = []
norm_accuracy_list = []
norm_train_accuracy_list = []
L1_accuracy_list = []
L1_train_accuracy_list = []
PCA_accuracy_list = []
import function as f
import time

filename = '2017.12.11 Dataset Project 2.csv'
C = 6.5
gamma = 0.24

X, Y = f.load_data(filename)
Xtr, Xtst, Ytr, Ytst = f.split_data(X, Y)


def main():

    t = time.time()
    alpha_star, res = f.find_alpha_star(Xtr, Ytr, C, gamma)
    totalTime = time.time() - t

    b_star = f.find_b_star(alpha_star, Xtr, Ytr, C, gamma)
    #print("b_star: ", b_star)

    ytstpred = f.predict(alpha_star, b_star, Xtr, Ytr, Xtst, gamma)
    ytrpred = f.predict(alpha_star, b_star, Xtr, Ytr, Xtr, gamma)

    test_accuracy = f.acc_score(ytstpred, Ytst)

    #print("Main train accuracy: ",f.acc_score(ytrpred,Ytr))

    output = open("output_homework2_28.txt",
                  "a")  # instead of 99, number of the team
    output.write("Homework 2, question 1")
    output.write("\nTraining objective function," + "%f" % res.fun)
Exemplo n.º 4
0
from spacetime.client.declarations import Producer, GetterSetter, Getter
from lxml import html,etree
import re, os
from time import time
from uuid import uuid4

from urlparse import urlparse, parse_qs
from uuid import uuid4

# store all the global varaibles
from function import save_data, load_data
import json

# loading global variable
file_name = 'data.txt'
pages_count, MaxOutputLink, invalid_count, subdomain = load_data(file_name)

logger = logging.getLogger(__name__)
LOG_HEADER = "[CRAWLER]"

@Producer(PaichunwLink)
@GetterSetter(OnePaichunwUnProcessedLink)
class CrawlerFrame(IApplication):
    app_id = "Paichunw"

    def __init__(self, frame):
        #self.starttime = time()
        self.app_id = "Paichunw"
        self.frame = frame

Exemplo n.º 5
0

pa = ap.parse_args()

where = pa.data_dir
path = pa.save_dir
lr = pa.learning_rate
save_dir = pa.save_dir
dropout = pa.dropout
power = pa.gpu
epochs = pa.epochs
architecture = pa.pretrained_model
hiddenl = pa.hidden_units


trainloader, validloader, testloader, train_data, valid_data, test_data = load_data(where)


pretr_model = pa.pretrained_model
model = getattr(models, pretr_model)(pretrained = True)

build_classifier(model)
build_classifier(model)

criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(),lr=0.0001)

model, optimizer = train_model(model, epochs, trainloader, validloader, criterion, optimizer, power, lr, hiddenl, dropout)

test_model(model, testloader)
save_model(model, train_data, optimizer, save_dir, epochs, lr, architecture, hiddenl, dropout)
Exemplo n.º 6
0
 ]
 result_eva.append(tmp)
 # ******************************1.parameters setting***************************
 feature_num = 128  #number of features: ecg+pcg 64 + 64
 group_num = 400  #number of feature subset in population
 best_feature = []  #the optimal subset
 best_score = 0  #the score of optimal subset
 times = 0
 group = [[random.randint(1, 2) for i in range(feature_num)]
          for j in range(group_num)]  #生成初始种群
 for each1 in range(len(group)):
     for each2 in range(len(group[each1])):
         if group[each1][each2] > 0:
             group[each1][each2] = 1
 # ******************************  2.data loading  ***************************
 x_train, y_train, x_test, y_test = function.load_data(params)
 #scaler.fit_transform(np.vstack([x_train,x_test]))
 # ****************************** 3.genetic algorithm
 schedule = range(0, 100, 1)
 for sch in tqdm.tqdm(schedule):
     score = []
     for i in range(group_num):
         x_train_tmp = fea_gene_generator(group[i], x_train)
         x_test_tmp = fea_gene_generator(group[i], x_test)
         score.append(
             caculate_fitness(x_train_tmp, y_train, x_test_tmp, y_test))
     group_score = []
     for index, score in enumerate(score):
         group_score.append([index, score])
     #Sort by the score of each subset
     group_score = sorted(group_score, key=lambda x: x[1], reverse=True)
Exemplo n.º 7
0
"""
__title__ = ''
__author__ = 'WNI10'
__mtime__ = '2018/9/15'
"""
from sklearn.datasets import load_iris
import function
# from sklearn import tree

if __name__ == '__main__':
    # iris = load_iris()
    # clf = tree.DecisionTreeClassifier()
    # clf = clf.fit(iris.data,iris.target)
    #
    # import graphviz
    # dot_data = tree.export_graphviz(clf,out_file=None)
    # graph = graphviz.Source(dot_data)
    # graph.render("iris")

    # data = load_iris().data
    # label = load_iris().target
    # function.OB(data,label)
    ###################################
    #画出树形图
    ###################################
    data, label = function.load_data("f60-1-3.xlsx", 1)
    data, label = function.createdataset(data, label, 0.2, 1, 5)
    function.OB(data[0], label[0], 'temp', 5, 50, 100)