Exemplo n.º 1
0
 def onTrainEpoch(epoch, loss):
     global acc
     global train_matrix
     global test_matrix
     train_accuracy = accuracy(train_matrix)
     print("Epoch #" + str(epoch) + " - Train Loss: " + str(loss) +
           "\tAccuracy: " + str(train_accuracy * 100))
     train_ca = class_accuracy(train_matrix)
     for i in range(len(classes)):
         print(classes[i][0] + ": \t" + str(train_ca[i] * 100))
     loss = test(model,
                 test_loader,
                 criterion,
                 args.device,
                 onBatch=onTestBatch)
     test_accuracy = accuracy(test_matrix)
     print("Epoch #" + str(epoch) + " - Test Loss: " + str(loss) +
           "\tAccuracy: " + str(test_accuracy * 100))
     test_ca = class_accuracy(test_matrix)
     for i in range(len(classes)):
         print(classes[i][0] + ": \t" + str(test_ca[i] * 100))
     train_matrix = np.zeros((len(classes), len(classes)))
     test_matrix = np.zeros((len(classes), len(classes)))
     if test_accuracy > acc:
         print("Saving model...")
         torch.save(model, args.model)
         print("Model saved!")
         acc = test_accuracy
Exemplo n.º 2
0
    def train(self, X, y, epochs=0, batch_size=1, lr=0.1, verbose=True):
        num_samples = len(X)
        for e in range(epochs):
            idx = np.random.permutation(num_samples)
            X_, y_ = X[idx], y[idx]

            metrics = dict(accuracies=[], losses=[])
            for i in range(0, len(X), batch_size): # NOTE: last batch size not equalized
                X_batch = X_[i:i + batch_size].T
                y_batch = y_[i:i + batch_size].T
                # input X_batch has shape (num_features, num_samples), with the batched index last
                # target y_batch has shape (num_classes, num_samples), one-hot encoding

                y_pred, cache = self.forward(X_batch)
                loss = self.criterion(y_pred, y_batch)
                self.update(y_pred, y_batch, cache, num_samples, lr)

                acc = accuracy(y_pred, y_batch)
                metrics['accuracies'].append(acc)
                metrics['losses'].append(loss)

            if verbose: 
                print('[epoch {}] acc: {:.3f}, loss: {:.3f}'.format(e,
                                                                    np.mean(metrics['accuracies']),
                                                                    np.mean(metrics['losses'])
                                                                   ))
Exemplo n.º 3
0
def val_iter(epoch,
             net,
             criterion,
             loader,
             checkpoint_dict,
             use_cuda,
             cfg,
             writer=None):
    net.eval()
    net.training = False
    run_loss = 0

    val_loss, output_list, target_list = 0, [], []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(loader):
            if use_cuda:
                inputs, targets = inputs.cuda(), targets.cuda()
            inputs, targets = Variable(inputs), Variable(targets)
            #outputs = net(inputs)[0] if cfg['CONFIG']['RECONSTRUCT'] else net(inputs)
            outputs = net(inputs)
            loss = criterion(outputs, targets)

            val_loss += loss.item()
            output_list.append(outputs.data)
            target_list.append(targets.data)
        if writer is not None:
            writer.add_scalar('Loss/Val', val_loss / len(loader), epoch + 1)

        output_cat = torch.cat(output_list, dim=0)
        target_cat = torch.cat(target_list, dim=0)
        acc1, acc5 = accuracy(output_cat, target_cat, topk=(1, 5))

        # Save checkpoint when best model
        print("\n| Validation Epoch #%d\t\t\tLoss: %.4f Acc@1: %.2f%%" %
              (epoch, val_loss / (batch_idx + 1), acc1))

        if acc1 > checkpoint_dict['acc']:
            print('| Saving Best model...\t\t\tTop1 = %.2f%%\tTop5 = %.2f%%' %
                  (acc1, acc5))
            checkpoint_dict['net'] = net.module.state_dict(
            ) if use_cuda else net.state_dict()
            checkpoint_dict['acc'] = acc1
            checkpoint_dict['epoch'] = epoch

            if not os.path.isdir('checkpoint'):
                os.mkdir('checkpoint')
            save_point = './checkpoint/{}/'.format(checkpoint_dict['dataset'])
            if not os.path.isdir(save_point):
                os.mkdir(save_point)
            torch.save(
                checkpoint_dict,
                '{}/{}.t7'.format(save_point, checkpoint_dict['file_name']))
Exemplo n.º 4
0
def test(net, testloader, use_cuda, cfg):
    print('\n[Test Phase] : Model setup')
    assert os.path.isdir('checkpoint'), 'Error: No checkpoint directory found!'
    net.eval()  # for BatchNorm
    net.training = False  # for Dropout

    output_list, target_list = [], []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            if use_cuda:
                inputs, targets = inputs.cuda(), targets.cuda()
            inputs, targets = Variable(inputs), Variable(targets)
            #outputs = net(inputs)[0] if cfg['CONFIG']['RECONSTRUCT'] else net(inputs)
            outputs = net(inputs)
            output_list.append(outputs.data)
            target_list.append(targets.data)

        output_cat = torch.cat(output_list, dim=0)
        target_cat = torch.cat(target_list, dim=0)
        acc1, acc5 = accuracy(output_cat, target_cat, topk=(1, 5))
        print("| Test Result\tAcc@1: %.2f%%\tAcc@5: %.2f%%" % (acc1, acc5))
Exemplo n.º 5
0
                                                            f,
                                                            minibatch_size=200,
                                                            epoch=20,
                                                            learning_rate=0.01)

best_net = mf.plot_history(e_loss, e_accuracy, e_validate, e_loss_val)
mb = mf.batchdata(x_test, 1000)
pred = []
for j in range(len(mb)):
    pred.append(e_nnet[best_net[0]].predict(mb[j]))
pv = np.concatenate(pred, axis=0)

# y_pred = e_nnet[best_net[0]].predict(x_test)

print('Test Set Accuracy with best model parameters: {}'.format(
    mf.accuracy(y_test, pv)))
f.write('\n\n')
f.write('Test Set Accuracy with best model parameters: {}\n'.format(
    mf.accuracy(y_test, pv)))

# Print classification report
print("Classification report \n=======================")
print(classification_report(y_true=y_test, y_pred=pv))
print("Confusion matrix \n=======================")
print(confusion_matrix(y_true=y_test, y_pred=pv))

f.write("Classification report \n=======================\n")
f.write(classification_report(y_true=y_test, y_pred=pv) + '\n')

# Compute confusion matrix
cnf_matrix = confusion_matrix(y_true=y_test, y_pred=pv)
Exemplo n.º 6
0
    test_matrix = np.zeros((len(classes), len(classes)))

    def onTestBatch(batch_id, features, labels, output, loss):
        global test_matrix
        output = torch.argmax(output, dim=1)
        mat = confusion_matrix(labels, output, len(classes))
        test_matrix = np.add(test_matrix, mat)

    acc = 0
    print("Testing model...")
    loss = test(model,
                test_loader,
                criterion,
                args.device,
                onBatch=onTestBatch)
    _acc = accuracy(test_matrix)
    if loaded:
        acc = _acc
    _test_ca = class_accuracy(test_matrix)
    for i in range(len(classes)):
        print(classes[i][0] + ": \t" + str(_test_ca[i] * 100))
    print("Before Training - Loss: " + str(loss) + "\tAccuracy: " +
          str(_acc * 100))
    test_matrix = np.zeros((len(classes), len(classes)))

    print("Training model...")

    def onTrainEpoch(epoch, loss):
        global acc
        global train_matrix
        global test_matrix
Exemplo n.º 7
0
y_pred_mlp = mlp.predict(X_test_ml)
end_test = time.time()
print("MLP test time: ", end_test - start_test)

file.write("MLP test time: " + str(end_test - start_test) + "\n")
file.write("MLP Final loss: " + str(mlp.loss_) + "\n")
print(mlp.loss_)

start_test = time.time()
y_train_pred_mlp = mlp.predict(X_train_ml)
end_test = time.time()
print("Train_accuracy test time: ", end_test - start_test)

cm = confusion_matrix(y_pred_mlp, y_test_ml)
train_cm = confusion_matrix(y_train_pred_mlp, y_train_ml)
print("Test Accuracy of MLPClassifier : ", fu.accuracy(cm))
print("Train Accuracy of MLPClassifier : ", fu.accuracy(train_cm))
file.write("MLP Classifier Test Accuracy: " + str(fu.accuracy(cm)) + "\n")
file.write("MLP Classifier Train Accuracy: " + str(fu.accuracy(train_cm)) +
           "\n")

stat_res = precision_recall_fscore_support(y_test_ml,
                                           y_pred_mlp,
                                           labels=labels_nums)
print(stat_res)
# fu.print_confusion_matrix(cm,labels_nums)

file.write("MLP Precision, Recall, F1 score \n\n")
for i, met in enumerate(metrics_list):
    file.write(met + "\n")
    file.write(str(stat_res[i]) + "\n")
Exemplo n.º 8
0
test_loader = DataLoader(datasets.MNIST('data', train=False, transform=transforms.Compose([
    transforms.ToTensor()])), batch_size=1)

model = CapsNet()
optimizer = optim.Adam(model.parameters())
margin_loss = DigitMarginLoss()
reconstruction_loss = torch.nn.MSELoss(size_average=False)
model.train()

for epoch in range(1, 11):
    epoch_tot_loss = 0
    epoch_tot_acc = 0
    for batch, (data, target) in enumerate(train_loader, 1):
        data = Variable(data)
        target = Variable(target)

        digit_caps, reconstruction = model(data, target)
        loss = margin_loss(digit_caps, target) + 0.0005 * reconstruction_loss(reconstruction, data.view(-1))
        epoch_tot_loss += loss

        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()

        acc = accuracy(digit_caps, target)
        epoch_tot_acc += acc

        template = '[Epoch {}] Loss: {:.4f} ({:.4f}), Acc: {:.2f}%'
        print(template.format(epoch, loss.data[0], (epoch_tot_loss / batch).data[0], 100 * (epoch_tot_acc / batch)))
Exemplo n.º 9
0
# sys.exit()

###
lamda = 0.005 #Learning rate
iteration = 2500
###
W1, b1, W2, b2, W3, b3 = functions.initialize_parameters(h1=128,h2=64)

for i in range(0, iteration):
    A1, cache_1 = functions.linear_propagate(train_x, W1, b1, 'relu')
    A2, cache_2 = functions.linear_propagate(A1, W2, b2, 'relu')
    Y_hat, cache_3 = functions.linear_propagate(A2, W3, b3, 'softmax')

    cost = functions.compute_cost(Y_hat, train_y)
    pb = functions.accuracy(Y_hat, train_y)
    
    print(cost)



    # dA3 = -1 * (np.divide(train_y, Y_hat) - np.divide(1 - train_y, 1 - Y_hat))
    dA3 = Y_hat - train_y

    dA2, dW3, db3 = functions.linear_backpropagate(dA3, cache_3, 'softmax')
    dA1, dW2, db2 = functions.linear_backpropagate(dA2, cache_2, 'relu')
    dA0, dW1, db1 = functions.linear_backpropagate(dA1, cache_1, 'relu')

    #Update W
    W1 = W1 - (lamda * dW1)
    W2 = W2 - (lamda * dW2)
Exemplo n.º 10
0
def main():
	# get arguments
	regularization, feature_type, path = functions.read_argv()
	epochs, mini_batch_size = 200, 10000
	stop_criteria = 0.0005

	# get data
	train_data = functions.read_gz_idx(path+'train-images-idx3-ubyte.gz')
	train_label = functions.read_gz_idx(path+'train-labels-idx1-ubyte.gz')
	test_data = functions.read_gz_idx(path+'t10k-images-idx3-ubyte.gz')
	test_label = functions.read_gz_idx(path+'t10k-labels-idx1-ubyte.gz')

	# data preprocessing
	train_data, train_label, test_data, test_label = data_preprocess(train_data, train_label, test_data, test_label, feature_type)

	# model initialization
	model = StochasticGradientDescent(len(train_data[0]), regularization, mini_batch_size)

	# initialize list for plotting
	accuracy_train = []
	accuracy_test = []

	# start training
	prev_loss = 0	# for stopping criteria
	epoch = epochs	# for plotting
	for e in range(epochs):
		# shuffle training data if batch
		if mini_batch_size == len(train_data):
			train_data, train_label = functions.unison_shuffle(train_data, train_label)

		# model fitting
		loss = model.fit(train_data, train_label, 0)
		
		# test the accuracy
		acc_train = functions.accuracy(model.classify(train_data), train_label)/100
		acc_test = functions.accuracy(model.classify(test_data), test_label)/100

		# record for plotting
		accuracy_train.append(acc_train)
		accuracy_test.append(acc_test)

		# log
		print ("epoch {0:3d}:\t Train loss: {1:8.4f},\t Train acc: {2:8.4f}, \tTest acc: {3:8.4f}".format(
			e+1, loss, acc_train, acc_test))

		# stopping criteria
		if np.absolute(prev_loss-loss)<stop_criteria:
			epoch = e+1
			break
		prev_loss = loss
		

	print ('End of Train & Test')
	print ('Plotting ... ')

	# plot to graph
	if regularization:	title = 'GD Regularize '+feature_type
	else:				title = 'GD '+feature_type
	functions.plot(title, [e for e in range(1, epoch+1)], accuracy_train, accuracy_test)

	print ("End Of The Program")
Exemplo n.º 11
0
p2 = fn.h(X_test_llenado, w2)
y_hat2 = fn.predict(p2, 0.5)

p3 = fn.h(X_test_sllenado, w3)
y_hat3 = fn.predict(p3, 0.5)

# ---------------------------- Desempeño -----------------------------------------------------------
V1 = fn.get_values(y_test_org.reshape(-1), y_hat1)
V2 = fn.get_values(y_test_llenado.reshape(-1), y_hat2)
V3 = fn.get_values(y_test_sllenado.reshape(-1), y_hat3)

medidas_d = pd.DataFrame(
    columns=['Precisión', 'Sensibilidad', 'Especificidad'],
    index=parametros.index)

medidas_d['Precisión'] = [fn.accuracy(i) for i in [V1, V2, V3]]
medidas_d['Sensibilidad'] = [fn.sensitivity(i) for i in [V1, V2, V3]]
medidas_d['Especificidad'] = [fn.specificity(i) for i in [V1, V2, V3]]

print(medidas_d)

# --------------------------- Desempeño por cohortes -----------------------------------------------
cohorte_p13 = data_techo_llenado[data_techo_llenado['p13'] == 1]
y_cp13 = cohorte_p13['p131']
cohorte_p13.drop('p131', axis=1, inplace=True)
cohorte_p17 = data_techo_llenado[data_techo_llenado['p17'].isin([0, 4])]
y_cp17 = cohorte_p17['p131']
cohorte_p17.drop('p131', axis=1, inplace=True)
cohorte_p44 = data_techo_llenado[data_techo_llenado['p44'].isin([1, 2, 3])]
y_cp44 = cohorte_p44['p131']
cohorte_p44.drop('p131', axis=1, inplace=True)
Exemplo n.º 12
0
                tag_scores = torch.sigmoid(tag_scores)
                #    print("after:",tag_scores)
                k = 0
                for i in tag_scores.squeeze(0):
                    if (i > x):
                        for m in target_dict:
                            if (target_dict[m] == k):
                                #      print(m + " ",end="")
                                save_loc.write(m + " ")
                    k += 1
                save_loc.write("\n")
            t += 1

            save_loc.close()
            #   print(x,functions.accuracy()[0])
            if (functions.accuracy()[0] > max_accuracy):
                max_accuracy = functions.accuracy()
                max_accuracy_index = x
        # exit()
            save_loc = open(settings.shengcheng_result, "w+", encoding="utf-8")
            break  # 阈值已确定时用break跳出

        print("最大准确率:", max_accuracy[0])
        print("此时阈值:", max_accuracy_index)

        # 根据阈值进行标签分类
        save_loc.close()

        save_loc = open(settings.shengcheng_result, "w+", encoding="utf-8")
        for amount in range(n):
            inputs = test_comment[amount]
Exemplo n.º 13
0
eta = 0.01
gamma = 0.1  # learning rate?

# Calculating the beta values based og the training set
betas_train = func.steepest(X_train, y_train, gamma)
#betas_train = func.SGD_beta(X_train, y_train, eta, gamma)

# Calculating ytilde and the model of logistic regression
z = X_test @ betas_train  # choosing best beta here?
model = func.logistic_function(z)
model = func.IndicatorFunc(model)

acc_scikit, TPR_scikit, precision_scikit, f1_score_scikit, AUC_scikit, predict_proba_scikit = func.scikit(
    X_train, X_test, y_train, y_test, model)

Acc = func.accuracy(model, y_test)
Acc_sklearn = acc_scikit
F1 = func.F1_score(y_test, model)
F1_sklearn = f1_score_scikit
Rec = func.recall(y_test, model)
Rec_sklearn = TPR_scikit
#precision          = func.precision(y_test, model)

#------------------------------------------------------------------------------
# We can test Accuracy score against scikit learn:
#------------------------------------------------------------------------------


def test_Accuracy():
    assert Acc == Acc_sklearn, \
    print("Our Accuracy score is not equal to the scikit learn Accuracy score.\
Exemplo n.º 14
0
y_pred = mlp_clf.predict(X_test)
end_test = time.time()
print("MLP test time: ", end_test - start_test)

file.write("MLP test time: " + str(end_test - start_test) + "\n")
file.write("MLP Final loss: " + str(mlp_clf.loss_) + "\n")
print(mlp_clf.loss_)

start_test = time.time()
y_train_pred = mlp_clf.predict(X_train)
end_test = time.time()
print("Train_accuracy test time: ", end_test - start_test)

cm = confusion_matrix(y_pred, y_test)
train_cm = confusion_matrix(y_train_pred, y_train)
print("MLP Classifier Test Accuracy: ", fu.accuracy(cm))
print("MLP Classifier Train Accuracy: ", fu.accuracy(train_cm))
file.write("MLP Classifier Test Accuracy: " + str(fu.accuracy(cm)) + "\n")
file.write("MLP Classifier Train Accuracy: " + str(fu.accuracy(train_cm)) +
           "\n")

stat_res = precision_recall_fscore_support(y_test,
                                           y_pred,
                                           labels=unique_labels)
print(stat_res)
file.write("MLP Precision, Recall, F1 score \n\n")
for i, met in enumerate(metrics_list):
    file.write(met + "\n")
    file.write(str(stat_res[i]) + "\n")

# fu.print_confusion_matrix(cm,np.unique(selected_crops_array))
Exemplo n.º 15
0
        # Plot treshold plot:
        #threshold_plot = func.threshold_plot(X_train, X_test, y_train, y_test, gamma, thresholds)

        # Calculating ytilde and the model of logistic regression
        z = X_test @ betas_train  # choosing best beta here?
        model = func.logistic_function(z)
        model = func.IndicatorFunc(model, threshold=0.44)

        # Get AUC score and predict_proba_scikit. Used for plots and terminal print
        acc_scikit, TPR_scikit, precision_scikit, f1_score_scikit, AUC_scikit, predict_proba_scikit \
        = func.scikit(X_train, X_test, y_train, y_test, model)

        # Calculating the different metrics:
        print('\n-------------------------------------------')
        print('The accuracy is  : %.3f' % func.accuracy(model, y_test))
        print('The F1 score is  : %.3f' % func.F1_score(y_test, model))
        print('The precision is : %.3f' % func.precision(y_test, model))
        print('The recall is    : %.3f' % func.recall(y_test, model))
        print('The AUC is       : %.3f' % AUC_scikit)
        print('-------------------------------------------')

        # Make Cumulative gain and ROC plot
        P.Cumulative_gain_plot(y_test, model)
        P.ROC_plot(y_test, predict_proba_scikit)

        # Creating a Confusion matrix using pandas and pandas dataframe
        P.Confusion_matrix(y_test, model)

    elif arg == "NN":
Exemplo n.º 16
0
# Gradient descent method with specified # epochs
for e in range(args.numepoch):
    # Get list of sum (Z) values for training and validation data
    sums = F.sum_function(weights, train_data, bias)
    valid_sums = F.sum_function(weights, valid_data, bias)

    # Run summations (Z) through activation function to get array Y
    train_act = F.activation(args.actfunction, sums)
    valid_act = F.activation(args.actfunction, valid_sums)

    # Record loss and accuracy at end of each epoch on training and validation data
    train_loss[e] = F.loss(train_act, train_label)
    valid_loss[e] = F.loss(valid_act, valid_label)

    train_acc[e] = F.accuracy(train_label, train_act)
    valid_acc[e] = F.accuracy(valid_label, valid_act)

    # Calculate weights gradient for each of 9 weights
    weight_grad = []
    for w in range(0, 9, 1):
        weight_grad += F.weights_gradient(args.actfunction, train_act,
                                          train_data, train_label, w)

    # Calculate bias gradient for current bias
    bias_grad = F.bias_gradient(args.actfunction, train_act, train_label)

    # Adjust weights
    for w in range(0, 9, 1):
        weights[w] = weights[w] - (weight_grad[w] * args.learningrate)
Exemplo n.º 17
0
        for j in range(int(train_x.shape[0] / BATCH)):
            x_batch = train_x[j * BATCH:(j + 1) * BATCH]
            y_batch = train_y[j * BATCH:(j + 1) * BATCH]

            diff = y_batch - f(w, x_batch)
            dw = -np.dot(x_batch.T, diff) + ALPHA * np.vstack(
                (np.array([[0.]]), w[1:]))
            if sys.argv[3]:
                dw2 += dw**2  # accumulate dw^2 for estimation of second derivative
            else:
                dw2 += 1
            w = w - LR / np.sqrt(dw2) * (dw)

        pred_y = f(w, train_x)
        loss = np.around(BCE(pred_y, train_y) / train_x.shape[0], decimals=4)
        acc = np.around(accuracy(np.around(pred_y), train_y), decimals=4)
        if val_data != None:
            pred_y = f(w, val_data[0])
            val_loss = np.around(BCE(pred_y, val_data[1]) /
                                 val_data[0].shape[0],
                                 decimals=4)
            val_acc = np.around(accuracy(np.where(pred_y >= 0.5, 1, 0),
                                         val_data[1]),
                                decimals=4)
            print(
                "iteration = {}, loss = {}, acc = {}, val_loss = {}, val_acc = {}"
                .format(i, loss, acc, val_loss, val_acc))
            if val_acc >= best_w[-1]:
                best_w = (w, i, acc, val_acc)
        else:
            print("iteration = {}, loss = {}, acc = {}".format(i, loss, acc))
Exemplo n.º 18
0
    if use_cuda:
        inputs = inputs.cuda()
        labels = labels.cuda()

    # Get predictions
    output = net(inputs)
    preds = torch.max(input=output, dim=1)[1]

    if use_cuda:
        preds = preds.data.cpu().numpy()
    else:
        preds = preds.data.numpy()

    # Calculate validation loss
    test_losses += criterion(output, labels).item() * n_samples
    test_accs += f.accuracy(y_true=labels, y_pred=output) * n_samples
    test_lengths += n_samples

    # Save predictions and labels
    test_preds += preds.tolist()
    test_targs += labels.tolist()

    # Save example inputs
    if len(examples) < n_examples:
        for n in range(n_examples):
            examples.append([inputs[n], labels[n].item(), preds[n].item()])

    # Print percentage run
    pbar_test.set_postfix(loss=test_losses / test_lengths,
                          perp=np.exp(test_losses / test_lengths),
                          acc=test_accs / test_lengths)
Exemplo n.º 19
0
if __name__ == "__main__":
# Data Preprocessing
    _, train_x, train_y, _ = train_data(sys.argv[1], sys.argv[2], sys.argv[3], val_split=0)
    
# Computing
    num = np.zeros((2))
    mean = np.zeros((2, train_x.shape[-1]))
    cov = np.zeros((2, train_x.shape[-1], train_x.shape[-1]))
    for i in range(2):
        target = np.where(train_y == i)[0]
        num[i] = target.shape[0]
        mean[i] = (np.sum(train_x[target], axis=0) / num[i])
        cov[i] = np.dot((train_x[target] - mean[i]).T, (train_x[target] - mean[i]))
    cov = np.sum(cov, axis=0) / train_x.shape[0]
    # Because cov might be singular, so np.linalg.inv() may cause a large numerical error
    cov_inv = np.linalg.pinv(cov)

    w = np.dot(cov_inv.T, mean[1] - mean[0])
    b = -0.5 * np.dot(np.dot(mean[1].T, cov_inv), mean[1]) + 0.5 * np.dot(np.dot(mean[0].T, cov_inv), mean[0]) + np.log(num[1] / num[0])
    w = np.vstack((b.reshape((1, 1)), w.reshape(w.shape[0], 1)))
    np.save("model.lda", w)

# Evaluating
    train_x = np.concatenate((np.ones((train_x.shape[0], 1)).astype(float), train_x), axis=1)
    train_y = train_y.reshape(train_y.shape[0], 1)

    pred_y = f(w, train_x)
    acc = np.around(accuracy(np.around(pred_y), train_y), decimals=4)
    print(acc)