def evolve_policy(self): """ Learn a model from flightdata and evolve specialized policies. """ params = model.estimate_params(self.log.name) noise_std = model.estimate_std(self.log.name, params) heli = ghh.Helicopter(params, noise_std, 0.1) genome = Genome.open(PREFIX + 'baseline.net') self.org = functions.evolve(heli, genome, epochs=500)
def evolve_policy(self, n=1): """ Learn a model from flightdata and evolve specialized policies. """ params = model.estimate_params(self.log.name) noise_std = model.estimate_std(self.log.name, params) heli = ghh.Helicopter(params, noise_std, 0.1) genome = Genome.open(PREFIX + 'baseline.net') for i in range(n): champion = functions.evolve(heli, genome, epochs=500) champion.evals = list() self.pool.append(champion)
# rk4.py 4th order Runge Kutta from pylab import * from functions import evolve, H pltparams = {'text.usetex': True} rcParams.update(pltparams) a = 0. # evolve from time a to time b in n steps b = 100. n = 10000 times, h = linspace(a, b, n, retstep=True) # find the position and velocities as functions of time and the times when v=0 for initial position equal to 1 x1_t, v1_t, t1_0 = evolve([1, 0], times, h) # find the position and velocities as functions of time and the times when v=0 for initial position equal to 2 x2_t, v2_t, t2_0 = evolve([2, 0], times, h) #plot the position and energy of the harmonic oscillator figure("position and energy") subplot(211) ylabel("$x(t)$") plot(times, x1_t) plot(times, cos(times), "--") subplot(212) ylabel("$E(t)$") xlabel("Times (a.u.)") plot(times, H(x1_t, v1_t)) plot(times, 1 / 2 * ones_like(times))
pltparams = { 'text.usetex': True } rcParams.update(pltparams) a = 0. # evolve from time a to time b in n steps b = 100. n = 10000 times, h = linspace(a, b, n, retstep=True) y_0 = [1,0] #initialize position and velocity x_t = [y_0[0], ] v_t = [y_0[1], ] # find the position and velocities as functions of time and the times when v=0 x1_t, v1_t, t1_0 = evolve(y_0, times, h) #plot position and energy of the harmonic oscillator figure("position and energy") subplot(211) ylabel("$x(t)$") plot(times, x_t) plot(times, cos(times), "--") subplot(212) ylabel("$E(t)$") xlabel("Times (a.u.)") plot(times, H(x_t, v_t)) plot(times, 1/2*ones_like(times)) show()