def power_lines_approx_parallel_123(detected_lines):
    parallel_bool_12 = True
    parallel_bool_13 = True
    parallel_bool_23= True
    crossover_bool = False
    radians_allowed = np.pi/3
    img_heigth = 1080
    if detected_lines[0][4] == True:
        a1,b1,length1 = find_cart_line_eq(detected_lines[0][0],detected_lines[0][1],detected_lines[0][2],detected_lines[0][3])
        rho1, theta1, length1 = perpendicular_polar_line(a1,b1,length1)
        
    if detected_lines[1][4] == True:    
        a2,b2,length2 = find_cart_line_eq(detected_lines[1][0],detected_lines[1][1],detected_lines[1][2],detected_lines[1][3])
        rho2, theta2, length2 = perpendicular_polar_line(a2,b2,length2)
        
    if detected_lines[2][4] == True:
        a3,b3,length3 = find_cart_line_eq(detected_lines[2][0],detected_lines[2][1],detected_lines[2][2],detected_lines[2][3])
        rho3, theta3, length3 = perpendicular_polar_line(a3,b3,length3)
    
    if detected_lines[0][4] and detected_lines[1][4]:
        
        if not lines_result_approx_parallel(theta1,theta2,a1,b1,a2,b2,img_heigth,crossover_bool ,radians_allowed):
            parallel_bool_12 = False
    if detected_lines[0][4] and detected_lines[2][4]:
        if not (lines_result_approx_parallel(theta3,theta1,a3,b3,a1,b1,img_heigth,crossover_bool,radians_allowed)):
            parallel_bool_13 = False
    if detected_lines[1][4] and detected_lines[2][4]:
        if not lines_result_approx_parallel(theta3,theta2,a3,b3,a2,b2,img_heigth,crossover_bool ,radians_allowed):
            parallel_bool_23= False
    return parallel_bool_12, parallel_bool_13, parallel_bool_23
def label_lines_org(lines, ransac_lines,left_x_bound, right_x_bound):
    left_lines=[]
    mid_lines=[]
    right_lines=[]
    other_lines=[]
    power_mast_lines =[]
    print(ransac_lines)
    left_idx, mid_idx, right_idx = find_mid_line(ransac_lines)
    crossover_bool = True
    radians_allowed = np.pi/4
    for i in range(0,len(lines)):
        x1 = lines[i][0][0]
        y1 = lines[i][0][1]
        x2 = lines[i][0][2]
        y2 = lines[i][0][3]
        a,b,length = find_cart_line_eq(x1,y1,x2,y2)
        rho, theta, length = perpendicular_polar_line(a,b,length)
        if (x1 < left_x_bound) or (x2 < left_x_bound) or (x1 > right_x_bound) or (x2 > right_x_bound):
            other_lines.append(lines[i][0])
            #print("Other line")
        else:
            #print("går forbiii")
            a_l,b_l,length = find_cart_line_eq(ransac_lines[left_idx][0],ransac_lines[left_idx][1],ransac_lines[left_idx][2],ransac_lines[left_idx][3])
            rho_l, theta_l, length = perpendicular_polar_line(a_l,b_l,length)
            close_bool = line_within_reach(a_l,b_l,x1,y1,x2,y2)
            parallel_bool = lines_approx_parallel(theta_l,theta,a_l,b_l,a,b,1920,crossover_bool,radians_allowed )
            if close_bool and parallel_bool:
                left_lines.append(lines[i][0])
                
            else:
                #print("not left because par,close : ", parallel_bool, close_bool)
                #a_m = ransac_lines[mid_idx][0]
                #b_m = ransac_lines[mid_idx][1]
                #theta_m = ransac_lines[mid_idx][3]
                a_m,b_m,length = find_cart_line_eq(ransac_lines[mid_idx][0],ransac_lines[mid_idx][1],ransac_lines[mid_idx][2],ransac_lines[mid_idx][3])
                rho_m, theta_m, length = perpendicular_polar_line(a_m,b_m,length)
                close_bool = line_within_reach(a_m,b_m,x1,y1,x2,y2)
                parallel_bool = lines_approx_parallel(theta_m,theta,a_m,b_m,a,b,1920,crossover_bool,radians_allowed )
                if close_bool and parallel_bool:
                    mid_lines.append(lines[i][0])
                    
                    #print("Accepted as mid line ",theta_m,theta,b_m,b)
                else:
                    #print("not mid because par,close : ", parallel_bool, close_bool)
                    #print("NOT accepted as mid line ",np.rad2deg(theta_m),np.rad2deg(theta),b_m,b)
                    a_r,b_r,length = find_cart_line_eq(ransac_lines[right_idx][0],ransac_lines[right_idx][1],ransac_lines[right_idx][2],ransac_lines[right_idx][3])
                    rho_r, theta_r, length = perpendicular_polar_line(a_r,b_r,length)
                    close_bool = line_within_reach(a_r,b_r,x1,y1,x2,y2)
                    parallel_bool = lines_approx_parallel(theta_r,theta,a_r,b_r,a,b,1920,crossover_bool,radians_allowed )
                    if close_bool and parallel_bool:
                        right_lines.append(lines[i][0])
                    else:
                        #print("not right because par,close : ", parallel_bool, close_bool)
                        power_mast_lines.append(lines[i][0])
                        #print("power mast line")
    print(len(power_mast_lines), " power mast lines ")               
    return left_lines,mid_lines,right_lines, other_lines 
def AMA_RANSAC_alg(img):
    edges = cv2.Canny(img, 350, 110)
    minLineLength = 10
    maxLineGap = 8
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength,
                            maxLineGap)
    binary_img = np.zeros(np.shape(img))
    binary_img = draw_hough_lines(lines, binary_img, 1)

    detected_lines_are_parallel = False
    times_tried = 0
    while detected_lines_are_parallel == False:

        max_attempts = 50 + times_tried * 100
        detected_lines = three_line_RANSAC(binary_img, max_attempts)
        if len(detected_lines) == 0:
            print("no detected edges")
            break

        a1, b1, length1 = find_cart_line_eq(detected_lines[0][0],
                                            detected_lines[0][1],
                                            detected_lines[0][2],
                                            detected_lines[0][3])
        rho1, theta1, length1 = perpendicular_polar_line(a1, b1, length1)

        a2, b2, length2 = find_cart_line_eq(detected_lines[1][0],
                                            detected_lines[1][1],
                                            detected_lines[1][2],
                                            detected_lines[1][3])
        rho2, theta2, length2 = perpendicular_polar_line(a2, b2, length2)

        crossover_bool = True
        radians_allowed = np.pi / 3
        img_heigth = np.shape(img)[0]
        if lines_approx_parallel(theta1, theta2, a1, b1, a2, b2, img_heigth,
                                 crossover_bool, radians_allowed):
            a3, b3, length3 = find_cart_line_eq(detected_lines[2][0],
                                                detected_lines[2][1],
                                                detected_lines[2][2],
                                                detected_lines[2][3])
            rho3, theta3, length3 = perpendicular_polar_line(a3, b3, length3)
            if (lines_approx_parallel(
                    theta1, theta3, a1, b1, a3, b3, img_heigth, crossover_bool,
                    radians_allowed) and lines_approx_parallel(
                        theta2, theta3, a2, b2, a3, b3, img_heigth,
                        crossover_bool, radians_allowed)):

                detected_lines_are_parallel = True

        times_tried += 1
        print(times_tried)
        if times_tried == 5:
            detected_lines = RANSAC_alg(img)
            detected_lines_are_parallel = True
    return detected_lines
Exemplo n.º 4
0
def label_lines(lines, ransac_lines):
    left_lines = []
    mid_lines = []
    right_lines = []
    other_lines = []
    power_mast_lines = []
    accepted_angle = np.pi / 2
    l_index, m_index, r_index = find_mid_line(ransac_lines)
    for i in range(0, len(lines)):
        x1 = lines[i][0][0]
        y1 = lines[i][0][1]
        x2 = lines[i][0][2]
        y2 = lines[i][0][3]
        a, b, length = find_cart_line_eq(x1, y1, x2, y2)
        left_x_bound = int(
            (y1 - ransac_lines[l_index][1]) / ransac_lines[l_index][0]) - 20
        right_x_bound = int(
            (y2 - ransac_lines[r_index][1]) / ransac_lines[r_index][0]) + 20
        rho, theta, length = perpendicular_polar_line(a, b, length)
        if (x1 < left_x_bound) or (x2 < left_x_bound) or (
                x1 > right_x_bound) or (x2 > right_x_bound):
            other_lines.append(lines[i][0])
        else:

            a_l = ransac_lines[l_index][0]
            b_l = ransac_lines[l_index][1]
            theta_l = ransac_lines[l_index][3]
            close_bool = line_within_reach(a_l, b_l, x1, y1, x2, y2)
            parallel_bool = lines_approx_parallel(theta_l, theta, a_l, b_l, a,
                                                  b, 1920, False,
                                                  accepted_angle)
            if close_bool and parallel_bool:
                left_lines.append(lines[i][0])
            else:
                a_m = ransac_lines[m_index][0]
                b_m = ransac_lines[m_index][1]
                theta_m = ransac_lines[m_index][3]
                close_bool = line_within_reach(a_m, b_m, x1, y1, x2, y2)
                parallel_bool = lines_approx_parallel(theta_m, theta, a_m, b_m,
                                                      a, b, 1920, False,
                                                      accepted_angle)
                if close_bool and parallel_bool:
                    mid_lines.append(lines[i][0])
                    #print("Accepted as mid line ",theta_m,theta,b_m,b)
                else:
                    #print("NOT accepted as mid line ",np.rad2deg(theta_m),np.rad2deg(theta),b_m,b)
                    a_r = ransac_lines[r_index][0]
                    b_r = ransac_lines[r_index][1]
                    theta_r = ransac_lines[r_index][3]
                    close_bool = line_within_reach(a_r, b_r, x1, y1, x2, y2)
                    parallel_bool = lines_approx_parallel(
                        theta_r, theta, a_r, b_r, a, b, 1920, False,
                        accepted_angle + 0.5)
                    if close_bool and parallel_bool:
                        right_lines.append(lines[i][0])
                    else:
                        power_mast_lines.append(lines[i][0])

    return left_lines, mid_lines, right_lines, other_lines, power_mast_lines
def ThreeLineRANSAC(binary_img,img_org,first_attempt):
    detected_lines_are_parallel = False
    times_tried = 0
    
    while detected_lines_are_parallel == False:
        
        max_attempts = first_attempt+ times_tried*100
        detected_lines= three_line_RANSAC(binary_img,max_attempts)
        if len(detected_lines) == 0:
            print("no detected edges")
            break
        print("RANSAC lines - ",detected_lines)
        
        a1,b1,length1 = find_cart_line_eq(detected_lines[0][0],detected_lines[0][1],detected_lines[0][2],detected_lines[0][3])
        rho1, theta1, length1 = perpendicular_polar_line(a1,b1,length1)
            
        a2,b2,length2 = find_cart_line_eq(detected_lines[1][0],detected_lines[1][1],detected_lines[1][2],detected_lines[1][3])
        rho2, theta2, length2 = perpendicular_polar_line(a2,b2,length2)
            
        if lines_approx_parallel(theta1,theta2,a1,b1,a2,b2,1920,True,np.pi/6):
            a3,b3,length3 = find_cart_line_eq(detected_lines[2][0],detected_lines[2][1],detected_lines[2][2],detected_lines[2][3])
            rho3, theta3, length3 = perpendicular_polar_line(a3,b3,length3)
            if (lines_approx_parallel(theta3,theta1,a3,b3,a1,b1,1920,True,np.pi/6) and lines_approx_parallel(theta3,theta2,a3,b3,a2,b2,1920,True,np.pi/6)):
                detected_lines_are_parallel = True
        else:
            print("lines are not parallel")
        times_tried += 1
        print("Times tried - ", times_tried)
        #print(times_tried)
        if times_tried == 5 :
            print("PROBLEM PROBLEM PROBLEM!!!")
            a3,b3,length3 = find_cart_line_eq(detected_lines[2][0],detected_lines[2][1],detected_lines[2][2],detected_lines[2][3])
            rho3, theta3, length3 = perpendicular_polar_line(a3,b3,length3)
            img_lined = img_org
            detected_lines_are_parallel = True
           
    power_lines = np.array([[a1,b1,rho1,theta1,length1],[a2,b2,rho2,theta2,length2],[a3,b3,rho3,theta3,length3]])
    indx = find_mid_line(power_lines)
    for i in range(0,len(detected_lines)):
        if i == indx:
            img_lined = cv2.line(img_org,(detected_lines[i][0],detected_lines[i][1]),(detected_lines[i][2],detected_lines[i][3]),(0,255,0),2)
        else:
            img_lined = cv2.line(img_org,(detected_lines[i][0],detected_lines[i][1]),(detected_lines[i][2],detected_lines[i][3]),(0,0,255),2)
        
    return img_lined,power_lines
def draw_AMA_RANSAC_HTIVS_results(img,power_lines):
    img_lined = img
    if power_lines[0][4] == True:
        a2,b2,length2 = find_cart_line_eq(power_lines[0][0],power_lines[0][1],power_lines[0][2],power_lines[0][3])
        rho2, theta2, length2 = perpendicular_polar_line(a2,b2,length2)
        print("LEFT LINE : ", np.rad2deg(theta2))
        img_lined = draw_result_line(power_lines[0][0],power_lines[0][1],img,0,0,255)
    if power_lines[1][4] == True:
        a2,b2,length2 = find_cart_line_eq(power_lines[1][0],power_lines[1][1],power_lines[1][2],power_lines[1][3])
        rho2, theta2, length2 = perpendicular_polar_line(a2,b2,length2)
        print("MID LINE : ", np.rad2deg(theta2))
        img_lined = draw_result_line(power_lines[1][0],power_lines[1][1],img,0,255,0)
    if power_lines[2][4] == True:
        a2,b2,length2 = find_cart_line_eq(power_lines[2][0],power_lines[2][1],power_lines[2][2],power_lines[2][3])
        rho2, theta2, length2 = perpendicular_polar_line(a2,b2,length2)
        print("RIGHT LINE : ", np.rad2deg(theta2))
        img_lined = draw_result_line(power_lines[2][0],power_lines[2][1],img,255,0,0)
    return img_lined
        
Exemplo n.º 7
0
def power_lines_approx_parallel(detected_lines):
    parallel_bool = True
    if detected_lines[0][4] == True:
        a1, b1, length1 = find_cart_line_eq(detected_lines[0][0],
                                            detected_lines[0][1],
                                            detected_lines[0][2],
                                            detected_lines[0][3])
        rho1, theta1, length1 = perpendicular_polar_line(a1, b1, length1)

    if detected_lines[1][4] == True:
        a2, b2, length2 = find_cart_line_eq(detected_lines[1][0],
                                            detected_lines[1][1],
                                            detected_lines[1][2],
                                            detected_lines[1][3])
        rho2, theta2, length2 = perpendicular_polar_line(a2, b2, length2)

    if detected_lines[2][4] == True:
        a3, b3, length3 = find_cart_line_eq(detected_lines[2][0],
                                            detected_lines[2][1],
                                            detected_lines[2][2],
                                            detected_lines[2][3])
        rho3, theta3, length3 = perpendicular_polar_line(a3, b3, length3)

    if detected_lines[0][4] and detected_lines[1][4]:

        if not lines_approx_parallel(theta1, theta2, a1, b1, a2, b2, 1920,
                                     True, np.pi / 2):
            parallel_bool = False
    if detected_lines[0][4] and detected_lines[2][4]:
        if not (lines_approx_parallel(theta3, theta1, a3, b3, a1, b1, 1920,
                                      True, np.pi / 2)):
            parallel_bool = False
    if detected_lines[1][4] and detected_lines[2][4]:
        if not lines_approx_parallel(theta3, theta2, a3, b3, a2, b2, 1920,
                                     True, np.pi / 2):
            parallel_bool = False
    #print("Power Lines Parallel : " ,parallel_bool)
    return parallel_bool
Exemplo n.º 8
0
def power_mast_detector(power_mast_lines, theta_l, a_l, b_l, theta_m, a_m, b_m,
                        theta_r, a_r, b_r, l_bool, m_bool, r_bool):
    accepted_lines = []
    other_lines = []
    for i in range(0, len(power_mast_lines)):
        a, b, length = find_cart_line_eq(power_mast_lines[i][0],
                                         power_mast_lines[i][1],
                                         power_mast_lines[i][2],
                                         power_mast_lines[i][3])
        rho, theta, length = perpendicular_polar_line(a, b, length)
        if lines_approx_orthogonal(theta, a, b, theta_l, a_l, b_l, theta_m,
                                   a_m, b_m, theta_r, a_r, b_r, l_bool, m_bool,
                                   r_bool):
            accepted_lines.append(power_mast_lines[i])
        else:
            other_lines.append(power_mast_lines[i])

    if len(accepted_lines) > 1:
        score = np.zeros(len(accepted_lines))

        for i in range(0, len(accepted_lines)):
            for j in range(0, len(accepted_lines)):
                if i != j:
                    if is_neighbour_line(accepted_lines[i][1],
                                         accepted_lines[i][3],
                                         accepted_lines[j][1],
                                         accepted_lines[j][3], 5):
                        score[i] += length_of_line(accepted_lines[j][0],
                                                   accepted_lines[j][1],
                                                   accepted_lines[j][2],
                                                   accepted_lines[j][3])
        core_line_indx = np.argmax(score)
        max_score = np.max(score)
        if max_score > 100:
            return True, accepted_lines, accepted_lines[core_line_indx]
        else:
            return False, accepted_lines, accepted_lines[core_line_indx]
    else:
        return False, accepted_lines, accepted_lines
Exemplo n.º 9
0
def KMeans_alg(img, power_lines):
    edges = cv2.Canny(img,350,110)
    minLineLength = 10
    maxLineGap = 8
    lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)
    polar_lines=[]
    cartesian_lines=[]
    lengths = []
    max_rho = 0
    min_rho= 0
    for i in range(0,len(lines)):
        a,b,length = find_cart_line_eq(lines[i][0][0],lines[i][0][1],lines[i][0][2],lines[i][0][3])
        rho, theta, length = perpendicular_polar_line(a,b,length)
        if rho < min_rho:
            min_rho = rho
        if rho > max_rho :
            max_rho = rho
        polar_lines.append([rho,theta])
        cartesian_lines.append([lines[i][0][0],lines[i][0][1],lines[i][0][2],lines[i][0][3]])
        lengths.append(length)
    
    scaled_polar_lines = polar_lines
    for i in range(0,len(scaled_polar_lines)):
        scaled_polar_lines[i][0] = 180*(scaled_polar_lines[i][0] - min_rho)/(max_rho - min_rho)
        #scaled_polar_lines[i][0] = 0
        scaled_polar_lines[i][1] = scaled_polar_lines[i][1]
           
        
    n_clusters = 3
    kmeans = KMeans(n_clusters=3, random_state=0).fit(scaled_polar_lines)
    clustering = kmeans.predict(scaled_polar_lines)
    votes = np.zeros(n_clusters)
    for i in range(0,len(lines)):
           #img_hough =  cv2.line(img,(lines[i][0],lines[i][1]),(lines[i][2],lines[i][3]),(a*255,255,0),2)
            for x1,y1,x2,y2 in lines[i]:
                a = clustering[i]
                if a == 0:
                    votes[0] += lengths[i]
                elif a == 1:
                    votes[1] +=lengths[i]
                else: 
                    votes[2] += lengths[i]
    ix = np.argmax(votes)
        
    sorted_lines,number_added = sort_lines(cartesian_lines,clustering)
    a,b,rho,theta = kmeans_voting_scheme(sorted_lines[ix],180, int(number_added[ix]))
        
        
    if lines_approx_parallel(power_lines[ix][3],theta,power_lines[ix][0],power_lines[ix][1],a,b,np.shape(img)[0],True,np.pi/2):
            #img_lined = draw_result_line(a,b,img_org,255,255,0)
        return a,b,False
    else:
        votes[ix] = 0
        ix = np.argmax(votes)
        a,b,rho,theta = kmeans_voting_scheme(sorted_lines[ix],180, int(number_added[ix]))
        if lines_approx_parallel(power_lines[ix][3],theta,power_lines[ix][0],power_lines[ix][1],a,b,np.shape(img)[0],True,np.pi/2):
            return a,b,False
                #img_lined = draw_result_line(a,b,img_org,255,255,0)
        else:
                #img_lined = draw_result_line(a,b,img_org,255,255,0)
            return 0,0, True