def main(file_path): darklist = functions.find_objname(file_path,functions.read_config_file("BIAS_HEADER")) master_dark = average_darks(darklist) try: functions.save_fits(master_dark,file_path+"temp/master_dark.fits") except IOError: os.system("mkdir "+file_path+"temp/") functions.save_fits(master_dark,file_path+"temp/master_dark.fits")
def fistar(fits): ### Use this command to automatically identify stars within an image ### to create a catalogue for matching ### first apply median filter to image data = pyfits.getdata(fits) data = ndimage.filters.median_filter(data,10) functions.save_fits(data,"temp.fits") command = "fistar " #command += "-i "+fits+" " command += "-i temp.fits " command += "-o "+fits+".fistar " command += "-t 100 " #command += "-f 1000 " command += "-M badpix.fits " command += "-F id,cx,cy,fwhm" os.system(command) ### Now plot image image = pyfits.getdata(fits) coords = loadtxt(fits+".fistar") mask = coords[:,3] > 3. mask *= coords[:,1] > 10 mask *= coords[:,1] < len(image[0])-10 mask *= coords[:,2] > 10 mask *= coords[:,2] < len(image[0])-10 coords = coords[mask] savetxt(fits+".fistar",coords,fmt="%.5f") #sigma = 0.01 #stdev = std(image) lim = 500 med = median(image) plt.clf() plt.imshow(image,cmap="gray",origin="lower",vmin=med-0.5*lim,vmax=med+lim,interpolation="nearest") plt.scatter(coords[:,1],coords[:,2],marker="o",facecolor="None",edgecolor="r",s=200) plt.savefig(fits+".png") #plt.show() plt.close() return coords
def main(file_path): darklist = functions.find_objname(file_path,functions.read_config_file("FLAT_HEADER")) if len(darklist) == 0: print "Error: no flats found" raise IOError master_dark = average_darks(darklist,file_path+"temp/master_dark.fits") try: functions.save_fits(master_dark,file_path+"temp/master_flat.fits") except IOError: os.system("mkdir "+file_path+"temp/") functions.save_fits(master_dark,file_path+"temp/master_flat.fits")