Exemplo n.º 1
0
def test_reduce_logaddexp(int_inputs, real_inputs):
    int_inputs = OrderedDict(sorted(int_inputs.items()))
    real_inputs = OrderedDict(sorted(real_inputs.items()))
    inputs = int_inputs.copy()
    inputs.update(real_inputs)

    t = random_tensor(int_inputs)
    g = random_gaussian(inputs)
    truth = {
        name: random_tensor(int_inputs, domain)
        for name, domain in real_inputs.items()
    }

    state = 0
    state += g
    state += t
    for name, point in truth.items():
        with xfail_if_not_implemented():
            state += Delta(name, point)
    actual = state.reduce(ops.logaddexp, frozenset(truth))

    expected = t + g(**truth)
    assert_close(actual,
                 expected,
                 atol=1e-5,
                 rtol=1e-4 if get_backend() == "jax" else 1e-5)
Exemplo n.º 2
0
def test_lognormal_distribution(moment):
    num_samples = 100000
    inputs = OrderedDict(batch=bint(10))
    loc = random_tensor(inputs)
    scale = random_tensor(inputs).exp()

    log_measure = dist.LogNormal(loc, scale)(value='x')
    probe = Variable('x', reals())**moment
    with monte_carlo_interpretation(particle=bint(num_samples)):
        with xfail_if_not_implemented():
            actual = Integrate(log_measure, probe, frozenset(['x']))

    samples = backend_dist.LogNormal(loc, scale).sample((num_samples, ))
    expected = (samples**moment).mean(0)
    assert_close(actual.data, expected, atol=1e-2, rtol=1e-2)
Exemplo n.º 3
0
def test_lognormal_distribution(moment):
    num_samples = 100000
    inputs = OrderedDict(batch=Bint[10])
    loc = random_tensor(inputs)
    scale = random_tensor(inputs).exp()

    log_measure = dist.LogNormal(loc, scale)(value='x')
    probe = Variable('x', Real)**moment
    with interpretation(MonteCarlo(particle=Bint[num_samples])):
        with xfail_if_not_implemented():
            actual = Integrate(log_measure, probe, frozenset(['x']))

    _, (loc_data, scale_data) = align_tensors(loc, scale)
    samples = backend_dist.LogNormal(loc_data, scale_data).sample(
        (num_samples, ))
    expected = (samples**moment).mean(0)
    assert_close(actual.data, expected, atol=1e-2, rtol=1e-2)
Exemplo n.º 4
0
def test_eager_subs(int_inputs, real_inputs):
    int_inputs = OrderedDict(sorted(int_inputs.items()))
    real_inputs = OrderedDict(sorted(real_inputs.items()))
    inputs = int_inputs.copy()
    inputs.update(real_inputs)

    g = random_gaussian(inputs)

    for order in itertools.permutations(inputs):
        ground_values = {}
        dependent_values = {}
        for i, name in enumerate(order):
            upstream = OrderedDict([(k, inputs[k]) for k in order[:i]
                                    if k in int_inputs])
            value = random_tensor(upstream, inputs[name])
            ground_values[name] = value(**ground_values)
            dependent_values[name] = value

        expected = g(**ground_values)
        actual = g
        for k in reversed(order):
            with xfail_if_not_implemented():
                actual = actual(**{k: dependent_values[k]})
        assert_close(actual, expected, atol=1e-4)
Exemplo n.º 5
0
@pytest.mark.parametrize("case", TEST_CASES, ids=str)
@pytest.mark.parametrize("expand", [False, True])
def test_generic_enumerate_support(case, expand):

    with xfail_if_not_found():
        raw_dist = eval(case.raw_dist)

    dim_to_name, name_to_dim = _default_dim_to_name(raw_dist.batch_shape)
    with interpretation(normalize_with_subs):
        funsor_dist = to_funsor(raw_dist, output=funsor.Real, dim_to_name=dim_to_name)

    assert getattr(raw_dist, "has_enumerate_support", False) == getattr(funsor_dist, "has_enumerate_support", False)
    if getattr(funsor_dist, "has_enumerate_support", False):
        name_to_dim["value"] = -1 if not name_to_dim else min(name_to_dim.values()) - 1
        with xfail_if_not_implemented("enumerate support not implemented"):
            raw_support = raw_dist.enumerate_support(expand=expand)
            funsor_support = funsor_dist.enumerate_support(expand=expand)
            assert_close(to_data(funsor_support, name_to_dim=name_to_dim), raw_support)


@pytest.mark.parametrize("case", TEST_CASES, ids=str)
@pytest.mark.parametrize("sample_shape", [(), (2,), (4, 3)], ids=str)
def test_generic_sample(case, sample_shape):

    with xfail_if_not_found():
        raw_dist = eval(case.raw_dist)

    dim_to_name, name_to_dim = _default_dim_to_name(sample_shape + raw_dist.batch_shape)
    with interpretation(normalize_with_subs):
        funsor_dist = to_funsor(raw_dist, output=funsor.Real, dim_to_name=dim_to_name)