Exemplo n.º 1
0
def save_temporal_encoding(train_handler,
                           data_loader,
                           save_rootdir,
                           days_n: int = C_.DEFAULT_DAYS_N,
                           **kwargs):
    train_handler.load_model()  # important, refresh to best model
    train_handler.model.eval()  # model eval
    dataset = data_loader.dataset  # get dataset

    if not hasattr(train_handler.model, 'get_info'):
        return

    days = np.linspace(C_.DEFAULT_MIN_DAY, dataset.max_day, days_n)  #[::-1]
    temporal_encoding_info = train_handler.model.get_info()
    #print('temporal_encoding_info',temporal_encoding_info)

    results = {
        'model_name': train_handler.model.get_name(),
        'survey': dataset.survey,
        'band_names': dataset.band_names,
        'class_names': dataset.class_names,
        'days': days,
        'temporal_encoding_info': temporal_encoding_info,
    }

    ### save file
    save_filedir = f'{save_rootdir}/{dataset.lcset_name}/id={train_handler.id}.d'
    files.save_pickle(save_filedir, results)  # save file
    return
Exemplo n.º 2
0
def save_model_info(train_handler, data_loader, save_rootdir,
	**kwargs):
	train_handler.load_model() # important, refresh to best model
	train_handler.model.eval() # model eval
	dataset = data_loader.dataset # get dataset
	
	results = {
		'model_name':train_handler.model.get_name(),
		'survey':dataset.survey,
		'band_names':dataset.band_names,
		'class_names':dataset.class_names,

		'parameters':count_parameters(train_handler.model),
		'monitors':{},
	}
	for lmonitor in train_handler.lmonitors:
		results['monitors'][lmonitor.name] = {
			'save_dict':lmonitor.get_save_dict(),
			'best_epoch':lmonitor.get_best_epoch(),
			'time_per_iteration':lmonitor.get_time_per_iteration(),
			#'time_per_epoch_set':{set_name:lmonitor.get_time_per_epoch_set(set_name) for set_name in ['train', 'val']},
			'time_per_epoch':lmonitor.get_time_per_epoch(),
			'total_time':lmonitor.get_total_time(),
		}

	### save file
	save_filedir = f'{save_rootdir}/{dataset.lcset_name}/id={train_handler.id}.d'
	files.save_pickle(save_filedir, results) # save file
	return
Exemplo n.º 3
0
def save_dim_reductions(train_handler,
                        data_loader,
                        save_rootdir,
                        target_is_onehot: bool = False,
                        target_y_key='target/y',
                        pred_y_key='model/y',
                        days_n: int = DEFAULT_DAYS_N,
                        random_state=RANDOM_STATE,
                        **kwargs):
    train_handler.load_model()  # important, refresh to best model
    train_handler.model.eval()  # important, model eval mode
    dataset = data_loader.dataset  # get dataset

    dataset.reset_max_day()  # always reset max day
    days_embeddings = {}
    days_y_true = {}
    days = np.linspace(DEFAULT_MIN_DAY, dataset.max_day, days_n)  #[::-1]
    bar = ProgressBar(len(days))
    with torch.no_grad():
        for day in days:
            dataset.set_max_day(day)  # very important!!
            dataset.calcule_precomputed()  # very important!!

            tdicts = []
            for ki, in_tdict in enumerate(data_loader):
                _tdict = train_handler.model(
                    TDictHolder(in_tdict).to(train_handler.device))
                tdicts += [_tdict]
            tdict = minibatch_dict_collate(tdicts)

            ### class prediction
            y_true = tdict[target_y_key]  # (b)
            #y_pred_p = torch.nn.functional.softmax(tdict[pred_y_key], dim=-1) # (b,c)
            y_pred_p = torch.sigmoid(tdict[pred_y_key])  # (b,c)
            #print('y_pred_p',y_pred_p[0])

            if target_is_onehot:
                assert y_pred_.shape == y_true.shape
                y_true = torch.argmax(y_true, dim=-1)

            y_true = tensor_to_numpy(y_true)
            y_pred_p = tensor_to_numpy(y_pred_p)

            days_y_true[day] = y_true

            ### embeddings
            encz_last = tdict[f'model/encz_last']
            days_embeddings[day] = tensor_to_numpy(encz_last)
            bar(f'day={day:.3f}/{days[-1]:.3f}; {days_embeddings[day][:5,0]}')
    bar.done()

    ### train map
    scaler = StandardScaler()
    reduction_map = UMAP(
        n_components=2,
        metric='euclidean',
        n_neighbors=10,  # 5 10 20 50
        min_dist=.01,  # .01 .1 .2 .5 .9
        random_state=random_state,
        transform_seed=random_state,
        # verbose=1,
    )
    dim_reductor = DimReductor(
        scaler,
        reduction_map,
        inter_pca_dims=16,
    )
    x = np.concatenate([days_embeddings[day] for day in days], axis=0)
    dim_reductor.fit(
        x,
        drop_duplicates=True,
        # normal_std=1e-5,
    )

    ### compute maps
    days_dim_reductions = {}
    bar = ProgressBar(len(days))
    for day in days:
        x = days_embeddings[day]
        new_x = dim_reductor.transform(x)
        days_dim_reductions[day] = new_x
        bar(f'day={day:.3f}/{days[-1]:.3f}; x.shape={x.shape}; new_x.shape={new_x.shape}'
            )
    bar.done()

    results = {
        'model_name': train_handler.model.get_name(),
        'survey': dataset.survey,
        'band_names': dataset.band_names,
        'class_names': dataset.class_names,
        'days': days,
        'days_dim_reductions': days_dim_reductions,
        'days_y_true': days_y_true,
    }

    ### save file
    save_filedir = f'{save_rootdir}/{dataset.lcset_name}/id={train_handler.id}.d'
    files.save_pickle(save_filedir, results)  # save file
    dataset.reset_max_day()  # very important!!
    dataset.calcule_precomputed()  # very important!!
    return
            obse_sampler_bdict_full,
            original_space=0,
            add_samples=0,
            save_filedir=f'../save/obse_sampler/{cfilename}/{lcset_name}/00.png'
        )
        plot_obse_samplers(
            lcset_name,
            lcset_info,
            obse_sampler_bdict_full,
            original_space=1,
            add_samples=1,
            save_filedir=f'../save/obse_sampler/{cfilename}/{lcset_name}/11.png'
        )

        save_pickle(
            f'../save/obse_sampler/{cfilename}/{lcset_name}/obse_sampler_bdict_full.d',
            obse_sampler_bdict_full)
        obse_sampler_bdict = along_dict_obj_method(obse_sampler_bdict_full,
                                                   'clean')
        save_pickle(
            f'../save/obse_sampler/{cfilename}/{lcset_name}/obse_sampler_bdict.d',
            obse_sampler_bdict)

        ### generate synth curves
        sd_kwargs = {
            'synthetic_samples_per_curve':
            _C.SYNTH_SAMPLES_PER_CURVE,
            'method':
            main_args.method,
            'sne_specials_df':
            pd.read_csv(f'../data/{survey}/sne_specials.csv'),
Exemplo n.º 5
0
def save_performance(train_handler, data_loader, save_rootdir,
	target_is_onehot:bool=False,
	target_y_key='target/y',
	pred_y_key='model/y',
	days_n:int=DEFAULT_DAYS_N,
	**kwargs):
	train_handler.load_model() # important, refresh to best model
	train_handler.model.eval() # important, model eval mode
	dataset = data_loader.dataset # get dataset
	dataset.reset_max_day() # always reset max day

	days_rec_metrics_df = DFBuilder()
	days_class_metrics_df = DFBuilder()
	days_class_metrics_cdf = {c:DFBuilder() for c in dataset.class_names}
	days_predictions = {}
	days_cm = {}

	days = np.linspace(C_.DEFAULT_MIN_DAY, dataset.max_day, days_n)#[::-1]
	bar = ProgressBarMulti(len(days), 4)
	with torch.no_grad():
		can_be_in_loop = True
		for day in days:
			dataset.set_max_day(day) # very important!!
			dataset.calcule_precomputed() # very important!!
			try:
				if can_be_in_loop:
					tdicts = []
					for ki,in_tdict in enumerate(data_loader):
						_tdict = train_handler.model(TDictHolder(in_tdict).to(train_handler.device))
						tdicts += [_tdict]
					tdict = minibatch_dict_collate(tdicts)

					### mse
					mse_loss_bdict = {}
					for kb,b in enumerate(dataset.band_names):
						p_onehot = tdict[f'input/onehot.{b}'][...,0] # (b,t)
						#p_rtime = tdict[f'input/rtime.{b}'][...,0] # (b,t)
						#p_dtime = tdict[f'input/dtime.{b}'][...,0] # (b,t)
						#p_x = tdict[f'input/x.{b}'] # (b,t,f)
						p_rerror = tdict[f'target/rerror.{b}'] # (b,t,1)
						p_rx = tdict[f'target/recx.{b}'] # (b,t,1)

						p_rx_pred = tdict[f'model/decx.{b}'] # (b,t,1)
						mse_loss_b = (p_rx-p_rx_pred)**2/(C_.REC_LOSS_EPS+C_.REC_LOSS_K*(p_rerror**2)) # (b,t,1)
						mse_loss_b = seq_utils.seq_avg_pooling(mse_loss_b, p_onehot)[...,0] # (b,t,1) > (b,t) > (b)
						mse_loss_bdict[b] = mse_loss_b[...,0] # (b,1) > (b)

					mse_loss = torch.cat([mse_loss_bdict[b][...,None] for b in dataset.band_names], axis=-1).mean(dim=-1) # (b,d) > (b)
					mse_loss = mse_loss.mean()

					days_rec_metrics_df.append(day, {
						'_day':day,
						'mse':tensor_to_numpy(mse_loss),
						})

					### class prediction
					y_true = tdict[target_y_key] # (b)
					#y_pred_p = torch.nn.functional.softmax(tdict[pred_y_key], dim=-1) # (b,c)
					y_pred_p = torch.sigmoid(tdict[pred_y_key]) # (b,c)
					#print('y_pred_p',y_pred_p[0])

					if target_is_onehot:
						assert y_pred_.shape==y_true.shape
						y_true = torch.argmax(y_true, dim=-1)

					y_true = tensor_to_numpy(y_true)
					y_pred_p = tensor_to_numpy(y_pred_p)
					days_predictions[day] = {'y_true':y_true, 'y_pred_p':y_pred_p}
					metrics_cdict, metrics_dict, cm = fcm.get_multiclass_metrics(y_pred_p, y_true, dataset.class_names)
					for c in dataset.class_names:
						days_class_metrics_cdf[c].append(day, update_dicts([{'_day':day}, metrics_cdict[c]]))
					days_class_metrics_df.append(day, update_dicts([{'_day':day}, metrics_dict]))
					days_cm[day] = cm

					### progress bar
					recall = {c:metrics_cdict[c]['recall'] for c in dataset.class_names}
					bmetrics_dict = {k:metrics_dict[k] for k in metrics_dict.keys() if 'b-' in k}
					bar([f'lcset_name={dataset.lcset_name}; day={day:.3f}', f'mse_loss={mse_loss}', f'bmetrics_dict={bmetrics_dict}', f'recall={recall}'])

			except KeyboardInterrupt:
				can_be_in_loop = False

	bar.done()
	d = {
		'model_name':train_handler.model.get_name(),
		'survey':dataset.survey,
		'band_names':dataset.band_names,
		'class_names':dataset.class_names,
		'lcobj_names':dataset.get_lcobj_names(),

		'days':days,
		'days_rec_metrics_df':days_rec_metrics_df.get_df(),
		'days_predictions':days_predictions,
		'days_class_metrics_df':days_class_metrics_df.get_df(),
		'days_class_metrics_cdf':{c:days_class_metrics_cdf[c].get_df() for c in dataset.class_names},
		'days_cm':days_cm,
		}

	### save file
	save_filedir = f'{save_rootdir}/{dataset.lcset_name}/id={train_handler.id}.d'
	files.save_pickle(save_filedir, d) # save file
	dataset.reset_max_day() # very important!!
	dataset.calcule_precomputed() # very important!!
	return
Exemplo n.º 6
0
         ] if main_args.setn == '.' else main_args.setn
setns = [setns] if isinstance(setns, str) else setns

new_lcdataset = lcdataset.copy()  # copy with all original lcsets
for setn in setns:
    for kf in kfs:
        lcset_name = f'{kf}@{setn}'
        lcset = new_lcdataset[lcset_name]
        synth_rootdir = f'../save/ssne/{main_args.method}/{cfilename}/{lcset_name}'
        print('synth_rootdir=', synth_rootdir)
        synth_lcset = lcset.copy({})  # copy
        filedirs = fcfiles.get_filedirs(synth_rootdir, fext='ssne')
        bar = ProgressBar(len(filedirs))

        for filedir in filedirs:
            d = fcfiles.load_pickle(filedir)
            lcobj_name = d['lcobj_name']
            bar(f'lcset_name={lcset_name} - lcobj_name={lcobj_name}')

            for k, new_lcobj in enumerate(d['new_lcobjs']):
                synth_lcset.set_lcobj(f'{lcobj_name}.{k+1}', new_lcobj)

        bar.done()
        synth_lcset.reset()
        new_lcset_name = f'{lcset_name}.{main_args.method}'
        new_lcdataset.set_lcset(new_lcset_name, synth_lcset)

save_rootdir = f'{rootdir}'
save_filedir = f'{save_rootdir}/{cfilename}~method={main_args.method}.{_C.EXT_SPLIT_LIGHTCURVE}'
save_pickle(save_filedir, new_lcdataset)
        train_df_x = pd.concat([train_df_x_r] * k, axis='rows')
        train_df_y = pd.concat([train_df_y_r] * k, axis='rows')

    if train_config == 's':
        # train_df_x_s, train_df_y_s = load_features(f'../save/fats/{cfilename}/{main_args.kf}@train.{main_args.method}.df', main_args.mode)
        k = 1  # 1 2
        train_df_x = pd.concat([train_df_x_s] * k, axis='rows')
        train_df_y = pd.concat([train_df_y_s] * k, axis='rows')

    if train_config == 'r+s':
        # train_df_x_s, train_df_y_s = load_features(f'../save/fats/{cfilename}/{main_args.kf}@train.{main_args.method}.df', main_args.mode)
        # s_repeats = len(train_df_x_s)//len(train_df_x_r)
        train_df_x = pd.concat([train_df_x_r] * s_repeats + [train_df_x_s],
                               axis='rows')
        train_df_y = pd.concat([train_df_y_r] * s_repeats + [train_df_y_s],
                               axis='rows')

    fit_kwargs = {}
    features = list(train_df_x.columns)
    val_df_x, val_df_y = load_features(
        f'../save/fats/{cfilename}/{main_args.kf}@val.df', main_args.mode)
    brf_d = train_classifier(train_df_x, train_df_y, val_df_x, val_df_y,
                             lcset_info, **fit_kwargs)

    d = evaluate_classifier(
        brf_d, f'../save/fats/{cfilename}/{main_args.kf}@test.df',
        main_args.mode, lcset_info, **fit_kwargs)
    save_rootdir = f'../save'
    save_filedir = f'{save_rootdir}/exp=rf_eval~train_config={train_config}~mode={main_args.mode}/{cfilename}/{main_args.kf}@test/id={main_args.mid}.d'
    save_pickle(save_filedir, d)
    def export_dictionary(
        self,
        description: str,
        save_folder: str,
        band_names: list = None,
        filename_extra_parameters: dict = {},
        npartitions: int = C_.N_JOBS,
        any_band_points=C_.MIN_POINTS_LIGHTCURVE_SURVEY_EXPORT,
        outliers_df=None,
    ):
        class_dfkey = self.df_index_names['label']
        band_dfkey = self.df_index_names['band']

        ### separate bands for optimal
        band_names = list(
            self.band_dictionary.keys()) if band_names is None else band_names
        print(f'band_names={band_names}')

        ### clean dataframe to speed up thing in the objects search
        detections_df = self.detections_df.reset_index()
        print(f'cleaning the DataFrame - samples={len(detections_df):,}')
        #print('detections_df',detections_df[detections_df[self.df_index_names['oid']]=='ZTF17aabwgdw'])

        detections_ddf = dd.from_pandas(detections_df, npartitions=npartitions)
        detections_df = detections_ddf.loc[detections_ddf[
            self.df_index_names['band']].isin(
                [self.band_dictionary[b] for b in band_names])].compute()
        print(f'remove_invalid_bands > samples={len(detections_df):,}')

        detections_ddf = dd.from_pandas(detections_df, npartitions=npartitions)
        detections_df = detections_ddf.loc[
            detections_ddf[self.df_index_names['oid']].isin(
                list(set(self.labels_df.index)))].compute()
        print(f'remove_invalid_classes > samples={len(detections_df):,}')

        detections_ddf = dd.from_pandas(detections_df, npartitions=npartitions)
        detections_df = detections_ddf.loc[
            detections_ddf[self.df_index_names['obs']] > 0].compute()
        print(f'remove_negative_obs > samples={len(detections_df):,}')
        detections_df = detections_df.set_index(self.df_index_names['oid'])

        ### prepare dataset
        lcset = dsc.LCSet(
            {},
            self.survey_name,
            description,
            band_names,
            self.class_names,
            True,
        )
        lcdataset = dsc.LCDataset()
        lcdataset.set_lcset('outliers', lcset.copy())
        lcdataset.set_lcset('faint', lcset.copy())
        lcdataset.set_lcset('raw', lcset.copy())

        ### get filename
        filename_parameters = {
            'survey': self.survey_name,
            'bands': ''.join(band_names),
        }
        filename_parameters.update(filename_extra_parameters)
        save_filedir = f'{save_folder}/{self.get_dict_name(filename_parameters)}.{C_.EXT_RAW_LIGHTCURVE}'
        print(f'save_filedir={save_filedir}')

        ### easy variables
        outliers = [] if outliers_df is None else list(
            outliers_df['outliers'].values)
        easy_label_dict = {
            self.class_to_label_dict[c]: kc
            for kc, c in enumerate(self.class_names)
        }
        print(f'easy_label_dict={easy_label_dict}')

        # start loop
        correct_samples = 0
        detections_ddf = dd.from_pandas(detections_df, npartitions=npartitions)
        lcobj_names = sorted(list(set(detections_df.index)))
        bar = ProgressBar(len(lcobj_names))
        for k, lcobj_name in enumerate(lcobj_names):
            try:
                lcobj = lcc.LCO()

                ### get detections
                obj_df = detections_ddf.loc[lcobj_name].compute()  # FAST
                for kb, b in enumerate(band_names):
                    band_object_df = obj_df[obj_df[band_dfkey] ==
                                            self.band_dictionary[b]]
                    original_lc = band_object_df[[
                        self.df_index_names['obs_day'],
                        self.df_index_names['obs'],
                        self.df_index_names['obs_error']
                    ]].values
                    band_lc_flux = self.get_band(original_lc)
                    lcobj.add_b(b, band_lc_flux[:, 0], band_lc_flux[:, 1],
                                band_lc_flux[:, 2])

                lcobj.clean_small_cadence()
                lcobj.reset_day_offset_serial()

                ### get label
                y = self.get_label(self.labels_df, lcobj_name, easy_label_dict)
                lcobj.set_y(y)

                ### check lengths
                if lcobj.any_band_eqover_length(any_band_points):
                    ra, dec = self.get_radec(self.labels_df, lcobj_name)
                    lcobj.ra = ra
                    lcobj.dec = dec
                    lcset_name = 'raw'
                    if lcobj_name in outliers:
                        lcset_name = 'outliers'
                    elif lcobj.get_snr() < C_.MIN_SNR:
                        lcset_name = 'faint'
                    lcdataset[lcset_name].set_lcobj(lcobj_name, lcobj)
                    correct_samples += 1
                else:
                    pass
                    #print(lcobj_name)
                bar(f'obj={lcobj_name} - y={y} - c={self.class_names[y]} - lengths_bdict={lcobj.get_length_bdict()} - correct_samples (any-band>={any_band_points})={correct_samples:,}'
                    )

            except KeyboardInterrupt:
                bar.done()
                print('stopped!')
                break

        bar.done()
        save_pickle(save_filedir, lcdataset)
        return lcdataset
def save_attnstats(train_handler,
                   data_loader,
                   save_rootdir,
                   eps: float = C_.EPS,
                   djs=[2, 3],
                   **kwargs):
    train_handler.load_model()  # important, refresh to best model
    train_handler.model.eval()  # important, model eval mode
    dataset = data_loader.dataset  # get dataset

    is_parallel = 'Parallel' in train_handler.model.get_name()
    if not is_parallel:
        return

    attn_scores_collection = {b: [] for kb, b in enumerate(dataset.band_names)}
    with torch.no_grad():
        tdicts = []
        for ki, in_tdict in enumerate(data_loader):
            train_handler.model.autoencoder['encoder'].add_extra_return = True
            _tdict = train_handler.model(
                TDictHolder(in_tdict).to(train_handler.device))
            train_handler.model.autoencoder['encoder'].add_extra_return = False
            tdicts += [_tdict]
        tdict = minibatch_dict_collate(tdicts)

        for kb, b in enumerate(dataset.band_names):
            p_onehot = tdict[f'input/onehot.{b}'][..., 0]  # (b,t)
            #p_rtime = tdict[f'input/rtime.{b}'][...,0] # (b,t)
            #p_dtime = tdict[f'input/dtime.{b}'][...,0] # (b,t)
            #p_x = tdict[f'input/x.{b}'] # (b,t,f)
            #p_rerror = tdict[f'target/rerror.{b}'] # (b,t,1)
            #p_rx = tdict[f'target/recx.{b}'] # (b,t,1)

            # print(tdict.keys())
            uses_attn = any([f'attn_scores' in k for k in tdict.keys()])
            if not uses_attn:
                return

            ### attn scores
            attn_scores = tdict[f'model/attn_scores/encz.{b}']  # (b,h,qt)
            attn_scores_mean = attn_scores.mean(
                dim=1
            )[...,
              None]  # (b,h,qt)>(b,qt,1) # mean along heads. it is not a distributions as it can sum!=1
            attn_scores_min_max = seq_utils.seq_min_max_norm(
                attn_scores_mean, p_onehot)  # (b,qt,1)

            ### stats
            lcobj_names = dataset.get_lcobj_names()
            bar = ProgressBar(len(lcobj_names))
            for k, lcobj_name in enumerate(lcobj_names):
                lcobj = dataset.lcset[lcobj_name]
                lcobjb = lcobj.get_b(b)  # complete
                p_onehot_k = tensor_to_numpy(p_onehot[k])  # (b,t) > (t)
                b_len = p_onehot_k.sum()
                assert b_len <= len(lcobjb), f'{b_len}<={len(lcobjb)}'

                if b_len <= min(djs):
                    continue

                attn_scores_k = tensor_to_numpy(
                    attn_scores_mean[k, :b_len, 0])  # (b,qt,1)>(t)
                attn_scores_min_max_k = tensor_to_numpy(
                    attn_scores_min_max[k, :b_len, 0])  # (b,qt,1)>(t)
                attn_entropy_h = tensor_to_numpy(
                    torch.sum(-attn_scores[k, :, :b_len] *
                              torch.log(attn_scores[k, :, :b_len] + 1e-10),
                              dim=1))  # (b,h,qt)>(h)
                attn_scores_mean_distr = torch.softmax(
                    attn_scores_mean[k, :b_len, 0], dim=0)  # (b,qt,1)>(qt)
                attn_entropy = tensor_to_numpy(
                    torch.sum(-attn_scores_mean_distr *
                              torch.log(attn_scores_mean_distr + 1e-10),
                              dim=0))  # (qt)>()

                days = lcobjb.days[:b_len]  # (t)
                obs = lcobjb.obs[:b_len]  # (t)
                obse = lcobjb.obse[:b_len]  # (t)
                snr = lcobjb.get_snr(max_len=b_len)
                max_obs = np.max(obs)
                peak_day = days[np.argmax(obs)]
                duration = days[-1] - days[0]

                obs_min_max = min_max_norm(obs)  # (t)
                obse_min_max = min_max_norm(obse)  # (t)

                bar(f'b={b}; lcobj_name={lcobj_name}; b_len={b_len}; attn_entropy_h={attn_entropy_h}; attn_entropy={attn_entropy}; snr={snr}; max_obs={max_obs}'
                    )
                lc_features = []
                for j in range(min(djs), b_len):  # dj,dj+1,...,b_len-1
                    j_features = {
                        f'j': j,
                        f'attn_scores_k.j': attn_scores_k[j],
                        f'attn_scores_min_max_k.j': attn_scores_min_max_k[j],
                        f'days.j': days[j],
                        f'obs.j': obs[j],
                        f'obs_min_max.j': obs_min_max[j],
                        f'obse.j': obse[j],
                        f'obse_min_max.j': obse_min_max[j],
                    }
                    for dj in djs:
                        local_slope_m, local_slope_n, sub_days, sub_obs = get_local_slope(
                            days, obs, j, dj)
                        j_features.update({
                            f'local_slope_m.j~dj={dj}':
                            local_slope_m,
                            f'local_slope_n.j~dj={dj}':
                            local_slope_n,
                            f'peak_distance.j~dj={dj}~mode=local':
                            days[j] - peak_day,
                            f'peak_distance.j~dj={dj}~mode=mean':
                            np.mean(sub_days) - peak_day,
                            f'peak_distance.j~dj={dj}~mode=median':
                            np.median(sub_days) - peak_day,
                        })
                    lc_features += [j_features]

                attn_scores_collection[b] += [{
                    #'lcobj_name':lcobj_name,
                    f'c':
                    dataset.class_names[lcobj.y],
                    f'b_len':
                    b_len,
                    f'peak_day':
                    peak_day,
                    f'duration':
                    duration,
                    f'attn_entropy_h':
                    attn_entropy_h,
                    f'attn_entropy':
                    attn_entropy,
                    f'snr':
                    snr,
                    f'max_obs':
                    max_obs,
                    f'lc_features':
                    lc_features,
                }]
    bar.done()
    results = {
        'model_name': train_handler.model.get_name(),
        'survey': dataset.survey,
        'band_names': dataset.band_names,
        'class_names': dataset.class_names,
        'max_day': dataset.max_day,
        'attn_scores_collection': attn_scores_collection,
    }

    ### save file
    save_filedir = f'{save_rootdir}/{dataset.lcset_name}/id={train_handler.id}.d'
    files.save_pickle(save_filedir, results)  # save file
    dataset.reset_max_day()  # very important!!
    dataset.calcule_precomputed()
    return