Exemplo n.º 1
0
# Code from Chapter 10 of Machine Learning: An Algorithmic Perspective (2nd Edition)
# by Stephen Marsland (http://stephenmonika.net)

# You are free to use, change, or redistribute the code in any way you wish for
# non-commercial purposes, but please maintain the name of the original author.
# This code comes with no warranty of any kind.

# Stephen Marsland, 2008, 2014

# A runner for the Genetic Algorithm
import ga
import pylab as pl

pl.ion()
pl.show()

plotfig = pl.figure()

ga = ga.ga(30, "fF.fourpeaks", 301, 100, -1, "un", 4, True)
ga.runGA(plotfig)

pl.pause(0)
# pl.show()
Exemplo n.º 2
0
# Code from Chapter 12 of Machine Learning: An Algorithmic Perspective
# by Stephen Marsland (http://seat.massey.ac.nz/personal/s.r.marsland/MLBook.html)

# You are free to use, change, or redistribute the code in any way you wish for
# non-commercial purposes, but please maintain the name of the original author.
# This code comes with no warranty of any kind.

# Stephen Marsland, 2008

# A runner for the Genetic Algorithm
import ga

ga = ga.ga(20, 'fF.knapsack', 101, 100, -1, 'sp', 4, True)
ga.runGA()
Exemplo n.º 3
0
def main():
    print "Problem 1 Test 1:"
    ga1 = ga.parseInput(1, 'problem1_test1.txt')
    ga.runGA(ga1, 10, 'prob1_test1_results.csv')
    print "Problem 1 Test 2:"
    ga1 = ga.parseInput(1, 'problem1_test2.txt',)
    ga.runGA(ga1, 10, 'prob1_test2_results.csv')
    print "Problem 1 Test 3:"
    ga1 = ga.parseInput(1, 'problem1_test3.txt')
    ga.runGA(ga1, 10, 'prob1_test3_results.csv')
    print "Problem 2 Test 1:"
    ga1 = ga.parseInput(2, 'problem2_test1.txt')
    ga.runGA(ga1, 10, 'prob2_test1_results.csv')
    print "Problem 2 Test 2:"
    ga1 = ga.parseInput(2, 'problem2_test2.txt')
    ga.runGA(ga1, 10, 'prob2_test2_results.csv')
    print "Problem 2 Test 3:"
    ga1 = ga.parseInput(2, 'problem2_test3.txt')
    ga.runGA(ga1, 10, 'prob2_test3_results.csv')
    print "Problem 3 Test 1:"
    ga1 = ga.parseInput(3, 'problem3_test1.txt')
    ga.runGA(ga1, 10, 'prob3_test1_results.csv')
    print "Problem 3 Test 2:"
    ga1 = ga.parseInput(3, 'problem3_test2.txt')
    ga.runGA(ga1, 10, 'prob3_test2_results.csv')
    print "Problem 3 Test 3:"
    ga1 = ga.parseInput(3, 'problem3_test3.txt')
    ga.runGA(ga1, 10, 'prob3_test3_results.csv')
Exemplo n.º 4
0
# Code from Chapter 12 of Machine Learning: An Algorithmic Perspective
# by Stephen Marsland (http://seat.massey.ac.nz/personal/s.r.marsland/MLBook.html)

# You are free to use, change, or redistribute the code in any way you wish for
# non-commercial purposes, but please maintain the name of the original author.
# This code comes with no warranty of any kind.

# Stephen Marsland, 2008

# A runner for the Genetic Algorithm
import ga


ga = ga.ga(20,'fF.knapsack',101,100,-1,'sp',4,True)
ga.runGA()
Exemplo n.º 5
0
# Code from Chapter 10 of Machine Learning: An Algorithmic Perspective (2nd Edition)
# by Stephen Marsland (http://stephenmonika.net)

# You are free to use, change, or redistribute the code in any way you wish for
# non-commercial purposes, but please maintain the name of the original author.
# This code comes with no warranty of any kind.

# Stephen Marsland, 2008, 2014

# A runner for the Genetic Algorithm
import ga
import pylab as pl

pl.ion()
pl.show()

plotfig = pl.figure()

ga = ga.ga(30, 'fF.fourpeaks', 301, 100, -1, 'un', 4, True)
ga.runGA(plotfig)

pl.pause(0)
#pl.show()