Exemplo n.º 1
0
    def handle(self, input_frame):
        to_server_extras = cognitive_engine.unpack_extras(
            ikea_pb2.ToServerExtras, input_frame)

        if (to_server_extras.zoom_status ==
                ikea_pb2.ToServerExtras.ZoomStatus.STOP):
            msg = {'zoom_action': 'stop'}
            self._engine_conn.send(msg)
            pipe_output = self._engine_conn.recv()
            new_state_name = pipe_output.get('state')
            logger.info('Zoom Stopped. New state: %s', new_state_name)
            state = cv_rules.State[new_state_name.upper()]
            return state.update_result_wrapper(update_count=0)

        # When State contains a oneof field for different tasks, we can see if
        # none have been set using to_server_extras.WhichOneof('')

        if to_server_extras.state.step == ikea_pb2.State.Step.DONE:
            status = gabriel_pb2.ResultWrapper.Status.SUCCESS
            return cognitive_engine.create_result_wrapper(status)
        elif to_server_extras.state.step == ikea_pb2.State.Step.START:
            return cv_rules.State.BASE.update_result_wrapper(update_count=1)

        state = PROTO_TO_STATE[to_server_extras.state.step]
        if (to_server_extras.zoom_status ==
                ikea_pb2.ToServerExtras.ZoomStatus.START):
            msg = {'zoom_action': 'start', 'state': state.name.lower()}
            self._engine_conn.send(msg)
            logger.info('Zoom Started')

            status = gabriel_pb2.ResultWrapper.Status.SUCCESS
            result_wrapper = cognitive_engine.create_result_wrapper(status)

            to_client_extras = ikea_pb2.ToClientExtras()
            to_client_extras.zoom_info.app_key = credentials.ANDROID_KEY
            to_client_extras.zoom_info.app_secret = credentials.ANDROID_SECRET
            to_client_extras.zoom_info.meeting_number = (
                credentials.MEETING_NUMBER)
            to_client_extras.zoom_info.meeting_password = (
                credentials.MEETING_PASSWORD)

            result_wrapper.extras.Pack(to_client_extras)
            return result_wrapper

        assert len(input_frame.payloads) == 1
        if input_frame.payload_type != gabriel_pb2.PayloadType.IMAGE:
            status = gabriel_pb2.ResultWrapper.Status.WRONG_INPUT_FORMAT
            return cognitive_engine.create_result_wrapper(status)

        np_data = np.frombuffer(input_frame.payloads[0], dtype=np.uint8)
        img = cv2.imdecode(np_data, cv2.IMREAD_COLOR)
        if max(img.shape) > IMAGE_MAX_WH:
            raise Exception('Image too large')

        return self._result_wrapper_from_cv(img, to_server_extras.state)
Exemplo n.º 2
0
    def handle(self, input_frame):
        if self._state == State.DONE:
            status = gabriel_pb2.ResultWrapper.Status.SUCCESS
            return cognitive_engine.create_result_wrapper(status)

        to_server = cognitive_engine.unpack_extras(knex_pb2.ToServer,
                                                   input_frame)

        assert len(input_frame.payloads) == 1
        if input_frame.payload_type != gabriel_pb2.PayloadType.IMAGE:
            status = gabriel_pb2.ResultWrapper.Status.WRONG_INPUT_FORMAT
            return cognitive_engine.create_result_wrapper(status)

        width = to_server.width
        height = to_server.height
        if width > IMAGE_MAX_WH or height > IMAGE_MAX_WH:
            raise Exception('Image too large')

        yuv = np.frombuffer(input_frame.payloads[0], dtype=np.uint8)
        yuv = np.reshape(yuv, ((height + (height // 2)), width))
        img = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR_NV21)
        img = np.rot90(img, 3)

        if self._state == State.NOTHING:
            return self._update_state_gen_response(State.NOSE)
        elif self._state == State.NOSE:
            if _img_is_label(img, NOSE):
                return self._update_state_gen_response(State.FUSELAGE)
        elif self._state == State.FUSELAGE:
            if _img_is_label(img, FUSELAGE):
                return self._update_state_gen_response(State.REAR)
        elif self._state == State.REAR:
            if _img_is_label(img, REAR):
                return self._update_state_gen_response(State.TAIL)
        elif self._state == State.TAIL:
            if _img_is_label(img, TAIL):
                return self._update_state_gen_response(State.WINGS)
        elif self._state == State.WINGS:
            if _img_is_label(img, WINGS):
                return self._update_state_gen_response(State.DONE)
        else:
            raise Exception('Bad State')

        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        return cognitive_engine.create_result_wrapper(status)
Exemplo n.º 3
0
    def handle(self, input_frame):
        np_data = np.frombuffer(input_frame.payloads[0], dtype=np.uint8)
        frame = cv2.imdecode(np_data, cv2.IMREAD_COLOR)
        cv2.imshow("Image from source: {}".format(self._source_name), frame)
        cv2.waitKey(1)

        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)
        return result_wrapper
Exemplo n.º 4
0
    def handle(self, input_frame):
        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)

        result = gabriel_pb2.ResultWrapper.Result()
        result.payload_type = gabriel_pb2.PayloadType.IMAGE
        result.payload = input_frame.payloads[0]
        result_wrapper.results.append(result)

        return result_wrapper
Exemplo n.º 5
0
    def result_wrapper_without_update(self, update_count):
        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)

        to_client_extras = ikea_pb2.ToClientExtras()
        to_client_extras.state.update_count = update_count
        to_client_extras.state.step = self._proto_step

        result_wrapper.extras.Pack(to_client_extras)
        return result_wrapper
Exemplo n.º 6
0
def _result_wrapper_for_state(state):
    status = gabriel_pb2.ResultWrapper.Status.SUCCESS
    result_wrapper = cognitive_engine.create_result_wrapper(status)

    result = gabriel_pb2.ResultWrapper.Result()
    result.payload_type = gabriel_pb2.PayloadType.TEXT
    result.payload = state.get_speech().encode()
    result_wrapper.results.append(result)

    result = gabriel_pb2.ResultWrapper.Result()
    result.payload_type = gabriel_pb2.PayloadType.IMAGE
    result.payload = state.get_image_bytes()
    result_wrapper.results.append(result)

    logger.info('sending %s', state.get_speech())

    return result_wrapper
Exemplo n.º 7
0
    async def _heartbeat_helper(self):
        current_time = time.time()
        # We cannot directly iterate over items because we delete some entries
        for address, engine_worker in list(self._engine_workers.items()):
            if (current_time - engine_worker.get_last_sent()) < self._timeout:
                continue

            if ((not engine_worker.get_awaiting_heartbeat_response())
                    and engine_worker.get_current_input_metadata() is None):
                await engine_worker.send_heartbeat()
                continue

            source_info = engine_worker.get_source_info()
            logger.info(
                'Lost connection to engine worker that consumes items '
                'from source: %s', source_info.get_name())

            latest_input = source_info.get_latest_input()
            current_input_metadata = engine_worker.get_current_input_metadata()
            if (latest_input is not None
                    and current_input_metadata == latest_input.metadata):
                # Return token for frame engine was in the middle of processing
                status = gabriel_pb2.ResultWrapper.Status.ENGINE_ERROR
                result_wrapper = cognitive_engine.create_result_wrapper(status)
                await self.send_result_wrapper(
                    current_input_metadata.client_address,
                    source_info.get_name(),
                    current_input_metadata.frame_id,
                    result_wrapper,
                    return_token=True)

            source_info.remove_engine_worker(engine_worker)
            del self._engine_workers[address]

            if source_info.has_no_engine_workers():
                source_name = source_info.get_name()
                logger.info(
                    'No remaining engines consume input from source: '
                    '%s', source_name)
                del self._source_infos[source_name]
                self.remove_source_consumed(source_name)
Exemplo n.º 8
0
def buckle_result(dets_for_class, update_count, frames_with_one_buckle,
                  frames_with_two_buckles):
    shadetops = dets_for_class[SHADETOP]
    buckles = dets_for_class[BUCKLE]
    if (len(shadetops) == 0) or (len(buckles) == 0):
        return State.BUCKLE.result_wrapper_without_update(update_count)

    status = gabriel_pb2.ResultWrapper.Status.SUCCESS
    result_wrapper = cognitive_engine.create_result_wrapper(status)
    n_buckles = _count_buckles(shadetops, buckles)
    if n_buckles == 2:
        frames_with_one_buckle = 0
        frames_with_two_buckles += 1
        update_count += 1

        if frames_with_two_buckles > 3:
            return State.BLACKCIRCLE.update_result_wrapper(update_count)
    elif n_buckles == 1:
        frames_with_one_buckle += 1
        frames_with_two_buckles = 0
        update_count += 1

        # We only give this instruction when frames_with_one_buckle is
        # exactly 5 so it does not get repeated
        if frames_with_one_buckle == 5:
            result = gabriel_pb2.ResultWrapper.Result()
            result.payload_type = gabriel_pb2.PayloadType.TEXT
            result.payload = ONE_WIRE_INSTRUCTION_BYTES
            result_wrapper.results.append(result)

            logger.info('sending second wire message')

    to_client_extras = ikea_pb2.ToClientExtras()
    to_client_extras.state.update_count = update_count
    to_client_extras.state.step = State.BUCKLE.get_proto_step()
    to_client_extras.state.frames_with_one_buckle = frames_with_one_buckle
    to_client_extras.state.frames_with_two_buckles = frames_with_two_buckles

    result_wrapper.extras.Pack(to_client_extras)
    return result_wrapper
Exemplo n.º 9
0
    def update_result_wrapper(self, update_count):
        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)

        result = gabriel_pb2.ResultWrapper.Result()
        result.payload_type = gabriel_pb2.PayloadType.TEXT
        result.payload = self._speech_bytes
        result_wrapper.results.append(result)

        result = gabriel_pb2.ResultWrapper.Result()
        result.payload_type = gabriel_pb2.PayloadType.IMAGE
        result.payload = self._image_bytes
        result_wrapper.results.append(result)

        logger.info('Updated State: %s', self.name)

        to_client_extras = ikea_pb2.ToClientExtras()
        to_client_extras.state.update_count = update_count
        to_client_extras.state.step = self.get_proto_step()

        result_wrapper.extras.Pack(to_client_extras)

        return result_wrapper
Exemplo n.º 10
0
    def handle(self, input_frame):
        yuv = np.frombuffer(input_frame.payloads[0], dtype=np.uint8)

        to_server = cognitive_engine.unpack_extras(yuv_pb2.ToServer,
                                                   input_frame)
        width = to_server.width
        height = to_server.height
        rotation = to_server.rotation

        yuv = np.reshape(yuv, ((height + (height // 2)), width))
        img = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR_NV21)

        if rotation != 0:
            # np.rot90(img, 3) would correctly display an image rotated 90
            # degress from Android
            times_to_rotate = (360 - rotation) / 90
            img = np.rot90(img, times_to_rotate)

        cv2.imshow('Image from client', img)
        cv2.waitKey(1)

        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)
        return result_wrapper
Exemplo n.º 11
0
    def handle(self, input_frame):
        if input_frame.payload_type != gabriel_pb2.PayloadType.IMAGE:
            status = gabriel_pb2.ResultWrapper.Status.WRONG_INPUT_FORMAT
            return cognitive_engine.create_result_wrapper(status)

        extras = cognitive_engine.unpack_extras(openscout_pb2.Extras, input_frame)

        image = self.preprocess_image(input_frame.payloads[0])

        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)
        result_wrapper.result_producer_name.value = self.ENGINE_NAME

        if extras.is_training:
            training_dir =  os.getcwd()+"/training/" + extras.name + "/"
            try:
                os.mkdir(training_dir)
            except FileExistsError:
                logger.info("Directory already exists.")
            img = Image.open(image)
            path = training_dir + str(time.time()) + ".png"
            logger.info("Stored training image: {}".format(path))
            img.save(path)
            self.new_faces = True
        else:
            #if we received new images for training and training has ended...
            if self.new_faces:
                self.train()
                self.new_faces = False
                result = gabriel_pb2.ResultWrapper.Result()
                result.payload_type = gabriel_pb2.PayloadType.TEXT
                result.payload = 'Retraining complete.'.encode(encoding="utf-8")
                result_wrapper.results.append(result)
            else:
                faces_recognized = False
                response = self.infer(image)
                if response is not None:
                    identities = json.loads(response)
                    if len(identities) > 0:
                        logger.debug('Detected {} faces. Attempting recognition...'.format(len(identities)))
                        # Identify faces
                        for person in identities:
                            logger.debug(person)
                            if person['confidence'] > self.threshold:
                                faces_recognized = True
                                logger.info('Recognized: {} - Score: {:.3f}'.format(person['name'],  person['confidence']))
                                result = gabriel_pb2.ResultWrapper.Result()
                                result.payload_type = gabriel_pb2.PayloadType.TEXT
                                result.payload = 'Recognized {} ({:.3f})'.format(person['name'],  person['confidence']).encode(encoding="utf-8")
                                result_wrapper.results.append(result)
                            else:
                                logger.debug('Confidence did not exceed threshold.')
                        if faces_recognized:
                            if self.store_detections:
                                bb_img = Image.open(image)

                                draw = ImageDraw.Draw(bb_img)
                                for person in identities:
                                    draw.rectangle(self.getRectangle(person), width=4, outline='red')
                                    text = '{} ({:.3f})'.format(person['name'],  person['confidence'])
                                    w, h = draw.textsize(text)
                                    xy= ((self.getRectangle(person)[0]), (self.getRectangle(person)[0][0]+w, self.getRectangle(person)[0][1]+h))
                                    draw.rectangle(xy, width=4, outline='red', fill='red')
                                    draw.text(self.getRectangle(person)[0], text, fill='black')

                                draw.bitmap((0,0), self.watermark, fill=None)
                                filename = str(time.time()) + ".png"
                                path = self.storage_path + filename
                                logger.info("Stored image: {}".format(path))
                                bb_img.save(path)
                                bio = BytesIO()
                                bb_img.save(bio, format="JPEG")

                                detection_log.info("{},{},{},{},{:.3f},{}".format(extras.client_id, extras.location.latitude, extras.location.longitude, person['name'], person['confidence'], os.environ["WEBSERVER"]+"/"+filename))
                            else:
                                detection_log.info("{},{},{},{},{:.3f},".format(extras.client_id, extras.location.latitude, extras.location.longitude, person['name'], person['confidence']))
                        else:
                            logger.debug('No faces recognized with confidence above {}.'.format(self.threshold))
        return result_wrapper
Exemplo n.º 12
0
    def handle(self, input_frame):
        if input_frame.payload_type != gabriel_pb2.PayloadType.IMAGE:
            status = gabriel_pb2.ResultWrapper.Status.WRONG_INPUT_FORMAT
            return cognitive_engine.create_result_wrapper(status)

        extras = cognitive_engine.unpack_extras(openscout_pb2.Extras, input_frame)

        image = self.preprocess_image(input_frame.payloads[0])
        

        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)
        result_wrapper.result_producer_name.value = self.ENGINE_NAME

        if extras.is_training:
            training_dir =  os.getcwd()+"/training/" + extras.name + "/"
            try:
                os.mkdir(training_dir)
            except FileExistsError:
                logger.info("Directory already exists.")
            img = Image.open(image)
            path = training_dir + str(time.time()) + ".png"
            logger.info("Stored training image: {}".format(path))
            img.save(path)
            self.new_faces = True
        else:
            #if we received new images for training and training has ended...
            if self.new_faces:
                self.train()
                self.new_faces = False
                result = gabriel_pb2.ResultWrapper.Result()
                result.payload_type = gabriel_pb2.PayloadType.TEXT
                result.payload = 'Retraining complete.'.encode(encoding="utf-8")
                result_wrapper.results.append(result)
            else:
                detections = self.detection(image)

                face_ids = []
                for face in detections:
                    face_ids.append(face.face_id)

                if len(face_ids) > 0:
                    logger.debug('Detected {} faces. Attempting recognition...'.format(len(face_ids)))
                    # Identify faces
                    try:
                        identities = self.recognition(face_ids)
                    except ValidationError as v:
                        logger.error(v.message)

                    for person in identities:
                        logger.debug(person)
                        if len(person.candidates) > 0:
                            if person.candidates[0].confidence > self.threshold:
                                match = self.face_client.person_group_person.get(self.PERSON_GROUP_ID, person.candidates[0].person_id)
                                logger.info('Recognized: {} - Score: {:.3f}'.format(match.name,  person.candidates[0].confidence)) # Get topmost confidence score
                                result = gabriel_pb2.ResultWrapper.Result()
                                result.payload_type = gabriel_pb2.PayloadType.TEXT
                                result.payload = 'Recognized {} ({:.3f})'.format(match.name,  person.candidates[0].confidence).encode(encoding="utf-8")
                                result_wrapper.results.append(result)

                                if self.store_detections:
                                    bb_img = Image.open(image)
                                    draw = ImageDraw.Draw(bb_img)
                                    for face in detections:
                                        draw.rectangle(self.getRectangle(face), width=4, outline='red')
                                        text = '{} ({:.3f})'.format(match.name,  person.candidates[0].confidence)
                                        w, h = draw.textsize(text)
                                        xy= ((self.getRectangle(face)[0]), (self.getRectangle(face)[0][0]+w, self.getRectangle(face)[0][1]+h))
                                        draw.rectangle(xy, width=4, outline='red', fill='red')
                                        draw.text(self.getRectangle(face)[0], text, fill='black')

                                    draw.bitmap((0,0), self.watermark, fill=None)
                                    filename = str(time.time()) + ".png"
                                    path = self.storage_path + filename
                                    logger.info("Stored image: {}".format(path))
                                    bb_img.save(path)
                                    detection_log.info("{},{},{},{},{:.3f},{}".format(extras.client_id, extras.location.latitude, extras.location.longitude, match.name,  person.candidates[0].confidence, os.environ["WEBSERVER"]+"/"+filename))
                                else:
                                    detection_log.info("{},{},{},{},{:.3f}".format(extras.client_id, extras.location.latitude, extras.location.longitude, match.name,  person.candidates[0].confidence))
                            else:
                                logger.debug('Confidence did not exceed threshold.')
                        else:
                            logger.debug('No faces recognized from person group.')
        return result_wrapper
Exemplo n.º 13
0
 def handle(self, input_frame):
     status = gabriel_pb2.ResultWrapper.Status.SUCCESS
     result_wrapper = cognitive_engine.create_result_wrapper(status)
     return result_wrapper
Exemplo n.º 14
0
    def handle(self, input_frame):
        if input_frame.payload_type != gabriel_pb2.PayloadType.IMAGE:
            status = gabriel_pb2.ResultWrapper.Status.WRONG_INPUT_FORMAT
            return cognitive_engine.create_result_wrapper(status)

        extras = cognitive_engine.unpack_extras(openscout_pb2.Extras,
                                                input_frame)

        if extras.model != '' and extras.model != self.model:
            if not os.path.exists('./model/' + extras.model):
                logger.error(
                    f"Model named {extras.model} not found. Sticking with previous model."
                )
            else:
                self.detector = TFPredictor(extras.model)
                self.model = extras.model

        output_dict, image_np = self.process_image(input_frame.payloads[0])

        status = gabriel_pb2.ResultWrapper.Status.SUCCESS
        result_wrapper = cognitive_engine.create_result_wrapper(status)
        result_wrapper.result_producer_name.value = self.ENGINE_NAME

        if self.store_detections:
            try:
                vis_util.visualize_boxes_and_labels_on_image_array(
                    image_np,
                    np.squeeze(output_dict['detection_boxes']),
                    np.squeeze(output_dict['detection_classes']),
                    np.squeeze(output_dict['detection_scores']),
                    self.detector.category_index,
                    use_normalized_coordinates=True,
                    min_score_thresh=self.threshold,
                    line_thickness=4)

                img = Image.fromarray(image_np)
                draw = ImageDraw.Draw(img)
                draw.bitmap((0, 0), self.watermark, fill=None)
                bio = BytesIO()
                img.save(bio, format="JPEG")
                filename = str(time.time()) + ".png"
                path = self.storage_path + filename
            except IndexError as e:
                logger.error(f"IndexError while getting bounding boxes [{e}]")
                return result_wrapper

        if output_dict['num_detections'] > 0:
            #convert numpy arrays to python lists
            classes = output_dict['detection_classes'].tolist()
            boxes = output_dict['detection_boxes'].tolist()
            scores = output_dict['detection_scores'].tolist()

            result = gabriel_pb2.ResultWrapper.Result()
            result.payload_type = gabriel_pb2.PayloadType.TEXT

            detections_above_threshold = False
            r = ""
            for i in range(0, len(classes)):
                if (scores[i] > self.threshold):
                    if self.exclusions is None or classes[
                            i] not in self.exclusions:
                        detections_above_threshold = True
                        logger.info("Detected : {} - Score: {:.3f}".format(
                            self.detector.category_index[classes[i]]['name'],
                            scores[i]))
                        if i > 0:
                            r += ", "
                        r += "Detected {} ({:.3f})".format(
                            self.detector.category_index[classes[i]]['name'],
                            scores[i])
                        if self.store_detections:
                            detection_log.info("{},{},{},{},{:.3f},{}".format(
                                extras.client_id, extras.location.latitude,
                                extras.location.longitude,
                                self.detector.category_index[
                                    classes[i]]['name'], scores[i],
                                os.environ["WEBSERVER"] + "/" + filename))
                        else:
                            detection_log.info("{},{},{},{},{:.3f},".format(
                                extras.client_id, extras.location.latitude,
                                extras.location.longitude,
                                self.detector.category_index[
                                    classes[i]]['name'], scores[i]))

            if detections_above_threshold:
                result.payload = r.encode(encoding="utf-8")
                result_wrapper.results.append(result)

                if self.store_detections:
                    logger.info("Stored image: {}".format(path))
                    img.save(path)

        return result_wrapper