def run_corr2(x, y, g1, g2, k): from galsim import pyfits import os # Use fits binary table for faster I/O. (Converting to/from strings is slow.) assert x.shape == y.shape assert x.shape == g1.shape assert x.shape == g2.shape assert x.shape == k.shape x_col = pyfits.Column(name='x', format='1D', array=x.flatten() ) y_col = pyfits.Column(name='y', format='1D', array=y.flatten() ) g1_col = pyfits.Column(name='g1', format='1D', array=g1.flatten() ) g2_col = pyfits.Column(name='g2', format='1D', array=g2.flatten() ) k_col = pyfits.Column(name='k', format='1D', array=k.flatten() ) cols = pyfits.ColDefs([x_col, y_col, g1_col, g2_col, k_col]) table = pyfits.new_table(cols) phdu = pyfits.PrimaryHDU() hdus = pyfits.HDUList([phdu,table]) hdus.writeto('temp.fits',clobber=True) subprocess.Popen(['corr2','corr2.params', 'e2_file_name=temp.e2', 'k2_file_name=temp.k2', 'min_sep=%f'%min_sep,'max_sep=%f'%max_sep,'nbins=%f'%nbins]).wait() subprocess.Popen(['corr2','corr2.params', 'file_name2=temp.fits', 'ke_file_name=temp.ke', 'min_sep=%f'%min_sep,'max_sep=%f'%max_sep,'nbins=%f'%nbins]).wait() os.remove('temp.fits')
a fits file) into images that can be used for the SBProfile tests. The Maple program is saved in the same directory as moffat_pixel.mw. And the output that it produces is saved as moffat_pixel.dat. This program converts that into a fits file called moffat_pixel.fits. """ import numpy from galsim import pyfits import os for input_file in ["moffat_pixel.dat", "moffat_pixel_distorted.dat"]: output_file = input_file.split('.')[0] + '.fits' print input_file, output_file nx = 61 ny = 61 fin = open(input_file, 'r') vals = map(float, fin.readlines()) array = numpy.array(vals).reshape(nx, ny).transpose() hdus = pyfits.HDUList() hdu = pyfits.PrimaryHDU(array) hdus.append(hdu) if os.path.isfile(output_file): os.remove(output_file) hdus.writeto(output_file)
noise_sigma = min_flux/1000. print 'add noise with sigma = ',noise_sigma noise = galsim.GaussianNoise(ud, sigma = noise_sigma) # For the coadd image, we just need to add noise and write the file to disk. coadd_im = images[0] coadd_im.addNoise(noise) print 'Added noise to coadd image' coadd_file = image_path[0] print 'Original coadd file = ',coadd_file # We will build a new hdulist for the new file and copy what we need from the old one. # Also, we write this in uncompressed form and then fpack it to make sure that the # final result is funpack-able. hdu_list = pyfits.open(coadd_file) new_hdu_list = pyfits.HDUList() # Copy the primary hdu #new_hdu_list.append(hdu_list[0]) assert coadd_hdu == 1 coadd_im.write(hdu_list=new_hdu_list) # copy over the header item SEXMGZPT new_hdu_list[0].header['SEXMGZPT'] = hdu_list[coadd_hdu].header['SEXMGZPT'] # Next is the weight image assert coadd_wt_hdu == 2 coadd_wt_im = galsim.fits.read(hdu_list=hdu_list[coadd_wt_hdu], compression='rice') coadd_wt_im *= (1./noise_sigma**2) / coadd_wt_im.array.mean() print 'coadd_wt_im.mean = ',coadd_wt_im.array.mean(),' should = ',1./noise_sigma**2 coadd_wt_im.write(hdu_list=new_hdu_list)
def write_meds(file_name, obj_list, clobber=True): """ @brief Writes the galaxy, weights, segmaps images to a MEDS file. Arguments: ---------- @param file_name: Name of meds file to be written @param obj_list: List of MultiExposureObjects @param clobber Setting `clobber=True` when `file_name` is given will silently overwrite existing files. (Default `clobber = True`.) """ import numpy import sys from galsim import pyfits # initialise the catalog cat = {} cat['ncutout'] = [] cat['box_size'] = [] cat['start_row'] = [] cat['id'] = [] cat['dudrow'] = [] cat['dudcol'] = [] cat['dvdrow'] = [] cat['dvdcol'] = [] cat['row0'] = [] cat['col0'] = [] # initialise the image vectors vec = {} vec['image'] = [] vec['seg'] = [] vec['weight'] = [] # initialise the image vector index n_vec = 0 # get number of objects n_obj = len(obj_list) # loop over objects for obj in obj_list: # initialise the start indices for each image start_rows = numpy.ones(MAX_NCUTOUTS) * EMPTY_START_INDEX dudrow = numpy.ones(MAX_NCUTOUTS) * EMPTY_JAC_diag dudcol = numpy.ones(MAX_NCUTOUTS) * EMPTY_JAC_offdiag dvdrow = numpy.ones(MAX_NCUTOUTS) * EMPTY_JAC_offdiag dvdcol = numpy.ones(MAX_NCUTOUTS) * EMPTY_JAC_diag row0 = numpy.ones(MAX_NCUTOUTS) * EMPTY_SHIFT col0 = numpy.ones(MAX_NCUTOUTS) * EMPTY_SHIFT # get the number of cutouts (exposures) n_cutout = obj.n_cutouts # append the catalog for this object cat['ncutout'].append(n_cutout) cat['box_size'].append(obj.box_size) cat['id'].append(obj.id) # loop over cutouts for i in range(n_cutout): # assign the start row to the end of image vector start_rows[i] = n_vec # update n_vec to point to the end of image vector n_vec += len(obj.images[i].array.flatten()) # append the image vectors vec['image'].append(obj.images[i].array.flatten()) vec['seg'].append(obj.segs[i].array.flatten()) vec['weight'].append(obj.weights[i].array.flatten()) # append the Jacobian dudrow[i] = obj.wcs[i].dudx dudcol[i] = obj.wcs[i].dudy dvdrow[i] = obj.wcs[i].dvdx dvdcol[i] = obj.wcs[i].dvdy row0[i] = obj.wcs[i].origin.x col0[i] = obj.wcs[i].origin.y # check if we are running out of memory if sys.getsizeof(vec) > MAX_MEMORY: raise MemoryError( 'Running out of memory > %1.0fGB ' % MAX_MEMORY / 1.e9 + '- you can increase the limit by changing MAX_MEMORY') # update the start rows fields in the catalog cat['start_row'].append(start_rows) # add lists of Jacobians cat['dudrow'].append(dudrow) cat['dudcol'].append(dudcol) cat['dvdrow'].append(dvdrow) cat['dvdcol'].append(dvdcol) cat['row0'].append(row0) cat['col0'].append(col0) # concatenate list to one big vector vec['image'] = numpy.concatenate(vec['image']) vec['seg'] = numpy.concatenate(vec['seg']) vec['weight'] = numpy.concatenate(vec['weight']) # get the primary HDU primary = pyfits.PrimaryHDU() # second hdu is the object_data cols = [] cols.append( pyfits.Column(name='ncutout', format='i4', array=cat['ncutout'])) cols.append(pyfits.Column(name='id', format='i4', array=cat['id'])) cols.append( pyfits.Column(name='box_size', format='i4', array=cat['box_size'])) cols.append(pyfits.Column(name='file_id', format='i4', array=[1] * n_obj)) cols.append( pyfits.Column(name='start_row', format='%di4' % MAX_NCUTOUTS, array=numpy.array(cat['start_row']))) cols.append(pyfits.Column(name='orig_row', format='f8', array=[1] * n_obj)) cols.append(pyfits.Column(name='orig_col', format='f8', array=[1] * n_obj)) cols.append( pyfits.Column(name='orig_start_row', format='i4', array=[1] * n_obj)) cols.append( pyfits.Column(name='orig_start_col', format='i4', array=[1] * n_obj)) cols.append( pyfits.Column(name='dudrow', format='%df8' % MAX_NCUTOUTS, array=numpy.array(cat['dudrow']))) cols.append( pyfits.Column(name='dudcol', format='%df8' % MAX_NCUTOUTS, array=numpy.array(cat['dudcol']))) cols.append( pyfits.Column(name='dvdrow', format='%df8' % MAX_NCUTOUTS, array=numpy.array(cat['dvdrow']))) cols.append( pyfits.Column(name='dvdcol', format='%df8' % MAX_NCUTOUTS, array=numpy.array(cat['dvdcol']))) cols.append( pyfits.Column(name='cutout_row', format='%df8' % MAX_NCUTOUTS, array=numpy.array(cat['row0']))) cols.append( pyfits.Column(name='cutout_col', format='%df8' % MAX_NCUTOUTS, array=numpy.array(cat['col0']))) object_data = pyfits.new_table(pyfits.ColDefs(cols)) object_data.update_ext_name('object_data') # third hdu is image_info cols = [] cols.append( pyfits.Column(name='image_path', format='A256', array=['generated_by_galsim'])) cols.append( pyfits.Column(name='sky_path', format='A256', array=['generated_by_galsim'])) cols.append( pyfits.Column(name='seg_path', format='A256', array=['generated_by_galsim'])) image_info = pyfits.new_table(pyfits.ColDefs(cols)) image_info.update_ext_name('image_info') # fourth hdu is metadata cols = [] cols.append( pyfits.Column(name='cat_file', format='A256', array=['generated_by_galsim'])) cols.append( pyfits.Column(name='coadd_file', format='A256', array=['generated_by_galsim'])) cols.append(pyfits.Column(name='coadd_hdu', format='A1', array=['x'])) cols.append(pyfits.Column(name='coadd_seg_hdu', format='A1', array=['x'])) cols.append( pyfits.Column(name='coadd_srclist', format='A256', array=['generated_by_galsim'])) cols.append(pyfits.Column(name='coadd_wt_hdu', format='A1', array=['x'])) cols.append( pyfits.Column(name='coaddcat_file', format='A256', array=['generated_by_galsim'])) cols.append( pyfits.Column(name='coaddseg_file', format='A256', array=['generated_by_galsim'])) cols.append( pyfits.Column(name='cutout_file', format='A256', array=['generated_by_galsim'])) cols.append(pyfits.Column(name='max_boxsize', format='A3', array=['x'])) cols.append(pyfits.Column(name='medsconf', format='A3', array=['x'])) cols.append(pyfits.Column(name='min_boxsize', format='A2', array=['x'])) cols.append(pyfits.Column(name='se_badpix_hdu', format='A1', array=['x'])) cols.append(pyfits.Column(name='se_hdu', format='A1', array=['x'])) cols.append(pyfits.Column(name='se_wt_hdu', format='A1', array=['x'])) cols.append(pyfits.Column(name='seg_hdu', format='A1', array=['x'])) cols.append(pyfits.Column(name='sky_hdu', format='A1', array=['x'])) metadata = pyfits.new_table(pyfits.ColDefs(cols)) metadata.update_ext_name('metadata') # rest of HDUs are image vectors image_cutouts = pyfits.ImageHDU(vec['image'], name='image_cutouts') weight_cutouts = pyfits.ImageHDU(vec['weight'], name='weight_cutouts') seg_cutouts = pyfits.ImageHDU(vec['seg'], name='seg_cutouts') # write all hdu_list = pyfits.HDUList([ primary, object_data, image_info, metadata, image_cutouts, weight_cutouts, seg_cutouts ]) hdu_list.writeto(file_name, clobber=clobber)