Exemplo n.º 1
0
def get_HST_im_noise(images, SNRs, row, rng):
    [gal_im_v, gal_im_i] = images
    flux = np.array([gal_im_v.array.sum(), gal_im_i.array.sum()])
    xi_v = galsim.getCOSMOSNoise(file_name='data/acs_V_unrot_sci_cf.fits',
                                 rng=rng)
    xi_i = galsim.getCOSMOSNoise(file_name='data/acs_I_unrot_sci_cf.fits',
                                 rng=rng)
    var_v = gal_im_v.addNoiseSNR(xi_v, snr=SNRs[0], preserve_flux=True)
    var_i = gal_im_i.addNoiseSNR(xi_i, snr=SNRs[1], preserve_flux=True)
    xi_v = galsim.getCOSMOSNoise(file_name='data/acs_V_unrot_sci_cf.fits',
                                 variance=var_v,
                                 rng=rng)
    xi_i = galsim.getCOSMOSNoise(file_name='data/acs_I_unrot_sci_cf.fits',
                                 variance=var_i,
                                 rng=rng)
    # Compute sn_ellip_gauss
    res_v = galsim.hsm.FindAdaptiveMom(gal_im_v, strict=False)
    res_i = galsim.hsm.FindAdaptiveMom(gal_im_i, strict=False)
    if (res_v.error_message != "") or (res_v.error_message != ""):
        print "HSM failed"
    else:
        aperture_noise_v = np.sqrt(var_v * 2 * np.pi *
                                   (res_v.moments_sigma**2)) / 1
        aperture_noise_i = np.sqrt(var_i * 2 * np.pi *
                                   (res_i.moments_sigma**2)) / 1
        sn_ellip_gauss_v = res_v.moments_amp / aperture_noise_v
        sn_ellip_gauss_i = res_i.moments_amp / aperture_noise_i
        row['sn_ellip_gauss'] = np.array([sn_ellip_gauss_v, sn_ellip_gauss_i])
    row['noise_var'] = np.array([var_v, var_i])
    row['flux'] = flux
    row['input_SNR'] = SNRs
    return [gal_im_v, gal_im_i], [xi_v, xi_i]
Exemplo n.º 2
0
def get_CRG_basic(gal,
                  in_p,
                  true_SED=True,
                  noise_variance=np.array([1e-39, 1e-39])):
    """Comptes CRG for input galaxy.
    @param
    gal        galsim object of the galaxy to create CRG.
    in_p       Input parametrs used to draw galaxy. This must contain
               the bulge, disk and composite SEDs.
    tru_SED    If true then also return CRG with true SED as input
    noise_variance    variance of HST noise to be added to the CRG
                      input galaxy image in V and I bands
    """
    hst_param = Eu_Args(scale=0.03, psf_sig_o=0.071, psf_w_o=806)
    PSF = get_gaussian_PSF(hst_param)
    con = galsim.Convolve([gal, PSF])
    # get bandpass
    V_band = get_HST_Bandpass('F606W')
    I_band = get_HST_Bandpass('F814W')
    path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/')
    xi_v = galsim.getCOSMOSNoise(file_name=path + 'acs_V_unrot_sci_cf.fits',
                                 variance=noise_variance[0])
    xi_i = galsim.getCOSMOSNoise(file_name=path + 'acs_I_unrot_sci_cf.fits',
                                 variance=noise_variance[1])
    psf_v = get_eff_psf(PSF, in_p.c_SED, V_band)
    psf_i = get_eff_psf(PSF, in_p.c_SED, I_band)
    eff_PSFs = [psf_v, psf_i]
    gal_im_v = con.drawImage(V_band, nx=350, ny=350, scale=0.03)
    gal_im_i = con.drawImage(I_band, nx=350, ny=350, scale=0.03)
    gal_im_v.addNoise(xi_v)
    gal_im_i.addNoise(xi_i)
    #  Polynomial SEDs
    images = [gal_im_v, gal_im_i]
    bands = [V_band, I_band]
    crg1 = galsim.ChromaticRealGalaxy.makeFromImages(images=images,
                                                     bands=bands,
                                                     xis=[xi_v, xi_i],
                                                     PSFs=eff_PSFs)
    if true_SED:
        seds = [in_p.b_SED, in_p.d_SED]
        crg2 = galsim.ChromaticRealGalaxy.makeFromImages(images=images,
                                                         bands=bands,
                                                         xis=[xi_v, xi_i],
                                                         PSFs=eff_PSFs,
                                                         SEDs=seds)
        return crg1, crg2
    else:
        return crg1
Exemplo n.º 3
0
    def process(self, cache, ifield):
        self.log.info('begining for field %04d' % (ifield))
        outFname = os.path.join(self.config.outDir, 'noi%04d.fits' % (ifield))
        if os.path.exists(outFname):
            self.log.info('Already have the outcome')
            return
        self.log.info('simulating noise for field %s' % (ifield))

        ngrid = 64
        nx = 100
        ny = nx
        scale = 0.168

        variance = 0.01
        ud = galsim.UniformDeviate(ifield * 10000 + 1)

        # setup the galaxy image and the noise image
        noi_image = galsim.ImageF(nx * ngrid, ny * ngrid, scale=scale)
        noi_image.setOrigin(0, 0)
        corNoise    =   galsim.getCOSMOSNoise(file_name='./corPre/correlation.fits',\
                        rng=ud,cosmos_scale=scale,variance=variance)
        corNoise.applyTo(noi_image)
        pyfits.writeto(outFname, noi_image.array)
        return
Exemplo n.º 4
0
def test_whiten():
    """Test the options in config to whiten images
    """
    real_gal_dir = os.path.join('..','examples','data')
    real_gal_cat = 'real_galaxy_catalog_23.5_example.fits'
    config = {
        'image' : {
            'type' : 'Single',
            'random_seed' : 1234,
            'pixel_scale' : 0.05,
        },
        'stamp' : {
            'type' : 'Basic',
            'size' : 32,
        },
        'gal' : {
            'type' : 'RealGalaxy',
            'index' : 79,
            'flux' : 100,
        },
        'psf' : {  # This is really slow if we don't convolve by a PSF.
            'type' : 'Gaussian',
            'sigma' : 0.05
        },
        'input' : {
            'real_catalog' : {
                'dir' : real_gal_dir ,
                'file_name' : real_gal_cat
            }
        }
    }

    # First build by hand (no whitening yet)
    rng = galsim.BaseDeviate(1234 + 1)
    rgc = galsim.RealGalaxyCatalog(os.path.join(real_gal_dir, real_gal_cat))
    gal = galsim.RealGalaxy(rgc, index=79, flux=100, rng=rng)
    psf = galsim.Gaussian(sigma=0.05)
    final = galsim.Convolve(gal,psf)
    im1a = final.drawImage(nx=32, ny=32, scale=0.05)

    # Compare to what config builds
    galsim.config.ProcessInput(config)
    im1b, cv1b = galsim.config.BuildStamp(config, do_noise=False)
    np.testing.assert_equal(cv1b, 0.)
    np.testing.assert_equal(im1b.array, im1a.array)

    # Now add whitening, but no noise yet.
    cv1a = final.noise.whitenImage(im1a)
    print('From whiten, current_var = ',cv1a)
    galsim.config.RemoveCurrent(config)
    config['image']['noise'] =  { 'whiten' : True, }
    im1c, cv1c = galsim.config.BuildStamp(config, do_noise=False)
    print('From BuildStamp, current_var = ',cv1c)
    np.testing.assert_equal(cv1c, cv1a)
    np.testing.assert_equal(im1c.array, im1a.array)
    rng1 = rng.duplicate()  # Save current state of rng

    # 1. Gaussian noise
    #####
    config['image']['noise'] =  {
        'type' : 'Gaussian',
        'variance' : 50,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im2a = im1a.copy()
    im2a.addNoise(galsim.GaussianNoise(sigma=math.sqrt(50-cv1a), rng=rng))
    im2b, cv2b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv2b, 50)
    np.testing.assert_almost_equal(im2b.array, im2a.array, decimal=5)

    # If whitening already added too much noise, raise an exception
    config['image']['noise']['variance'] = 1.e-5
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass

    # 2. Poisson noise
    #####
    config['image']['noise'] =  {
        'type' : 'Poisson',
        'sky_level_pixel' : 50,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im3a = im1a.copy()
    sky = 50 - cv1a
    rng.reset(rng1.duplicate())
    im3a.addNoise(galsim.PoissonNoise(sky_level=sky, rng=rng))
    im3b, cv3b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv3b, 50, decimal=5)
    np.testing.assert_almost_equal(im3b.array, im3a.array, decimal=5)

    # It's more complicated if the sky is quoted per arcsec and the wcs is not uniform.
    config2 = galsim.config.CopyConfig(config)
    galsim.config.RemoveCurrent(config2)
    config2['image']['sky_level'] = 100
    config2['image']['wcs'] =  {
        'type' : 'UVFunction',
        'ufunc' : '0.05*x + 0.001*x**2',
        'vfunc' : '0.05*y + 0.001*y**2',
    }
    del config2['image']['pixel_scale']
    del config2['wcs']
    config2['image']['noise']['symmetrize'] = 4 # Also switch to symmetrize, just to mix it up.
    del config2['image']['noise']['whiten']
    rng.reset(1234+1) # Start fresh, since redoing the whitening/symmetrizing
    wcs = galsim.UVFunction(ufunc='0.05*x + 0.001*x**2', vfunc='0.05*y + 0.001*y**2')
    im3c = galsim.Image(32,32, wcs=wcs)
    im3c = final.drawImage(im3c)
    cv3c = final.noise.symmetrizeImage(im3c,4)
    sky = galsim.Image(im3c.bounds, wcs=wcs)
    wcs.makeSkyImage(sky, 100)
    mean_sky = np.mean(sky.array)
    im3c += sky
    extra_sky = 50 - cv3c
    im3c.addNoise(galsim.PoissonNoise(sky_level=extra_sky, rng=rng))
    im3d, cv3d = galsim.config.BuildStamp(config2)
    np.testing.assert_almost_equal(cv3d, 50 + mean_sky, decimal=4)
    np.testing.assert_almost_equal(im3d.array, im3c.array, decimal=5)

    config['image']['noise']['sky_level_pixel'] = 1.e-5
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass

    # 3. CCDNoise
    #####
    config['image']['noise'] =  {
        'type' : 'CCD',
        'sky_level_pixel' : 25,
        'read_noise' : 5,
        'gain' : 1,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im4a = im1a.copy()
    rn = math.sqrt(25-cv1a)
    rng.reset(rng1.duplicate())
    im4a.addNoise(galsim.CCDNoise(sky_level=25, read_noise=rn, gain=1, rng=rng))
    im4b, cv4b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv4b, 50, decimal=5)
    np.testing.assert_almost_equal(im4b.array, im4a.array, decimal=5)

    # Repeat with gain != 1
    config['image']['noise']['gain'] = 3.7
    galsim.config.RemoveCurrent(config)
    im5a = im1a.copy()
    rn = math.sqrt(25-cv1a * 3.7**2)
    rng.reset(rng1.duplicate())
    im5a.addNoise(galsim.CCDNoise(sky_level=25, read_noise=rn, gain=3.7, rng=rng))
    im5b, cv5b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv5b, 50, decimal=5)
    np.testing.assert_almost_equal(im5b.array, im5a.array, decimal=5)

    # And again with a non-trivial sky image
    galsim.config.RemoveCurrent(config2)
    config2['image']['noise'] = config['image']['noise']
    config2['image']['noise']['symmetrize'] = 4
    del config2['image']['noise']['whiten']
    rng.reset(1234+1)
    im5c = galsim.Image(32,32, wcs=wcs)
    im5c = final.drawImage(im5c)
    cv5c = final.noise.symmetrizeImage(im5c, 4)
    sky = galsim.Image(im5c.bounds, wcs=wcs)
    wcs.makeSkyImage(sky, 100)
    mean_sky = np.mean(sky.array)
    im5c += sky
    rn = math.sqrt(25-cv5c * 3.7**2)
    im5c.addNoise(galsim.CCDNoise(sky_level=25, read_noise=rn, gain=3.7, rng=rng))
    im5d, cv5d = galsim.config.BuildStamp(config2)
    np.testing.assert_almost_equal(cv5d, 50 + mean_sky, decimal=4)
    np.testing.assert_almost_equal(im5d.array, im5c.array, decimal=5)

    config['image']['noise']['sky_level_pixel'] = 1.e-5
    config['image']['noise']['read_noise'] = 0
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass

    # 4. COSMOSNoise
    #####
    file_name = os.path.join(galsim.meta_data.share_dir,'acs_I_unrot_sci_20_cf.fits')
    config['image']['noise'] =  {
        'type' : 'COSMOS',
        'file_name' : file_name,
        'variance' : 50,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im6a = im1a.copy()
    rng.reset(rng1.duplicate())
    noise = galsim.getCOSMOSNoise(file_name=file_name, variance=50, rng=rng)
    noise -= galsim.UncorrelatedNoise(cv1a, rng=rng, wcs=noise.wcs)
    im6a.addNoise(noise)
    im6b, cv6b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv6b, 50, decimal=5)
    np.testing.assert_almost_equal(im6b.array, im6a.array, decimal=5)

    config['image']['noise']['variance'] = 1.e-5
    del config['_current_cn_tag']
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass
Exemplo n.º 5
0
def check_crg_noise(n_sed, n_im, n_trial, tol):
    print("Checking CRG noise for")
    print("n_sed = {}".format(n_sed))
    print("n_im = {}".format(n_im))
    print("n_trial = {}".format(n_trial))
    print("Constructing chromatic PSFs")
    in_PSF = galsim.ChromaticAiry(lam=700., diam=2.4)
    out_PSF = galsim.ChromaticAiry(lam=700., diam=0.6)

    print("Constructing filters and SEDs")
    waves = np.arange(550.0, 900.1, 10.0)
    visband = galsim.Bandpass(galsim.LookupTable(waves,
                                                 np.ones_like(waves),
                                                 interpolant='linear'),
                              wave_type='nm')
    split_points = np.linspace(550.0, 900.0, n_im + 1, endpoint=True)
    bands = [
        visband.truncate(blue_limit=blim, red_limit=rlim)
        for blim, rlim in zip(split_points[:-1], split_points[1:])
    ]

    maxk = max([
        out_PSF.evaluateAtWavelength(waves[0]).maxk,
        out_PSF.evaluateAtWavelength(waves[-1]).maxk
    ])

    SEDs = [
        galsim.SED(galsim.LookupTable(waves, waves**i, interpolant='linear'),
                   flux_type='fphotons',
                   wave_type='nm').withFlux(1.0, visband) for i in range(n_sed)
    ]

    print("Constructing input noise correlation functions")
    rng = galsim.BaseDeviate(57721)
    in_xis = [
        galsim.getCOSMOSNoise(cosmos_scale=0.03,
                              rng=rng).dilate(1 + i * 0.05).rotate(
                                  5 * i * galsim.degrees) for i in range(n_im)
    ]

    print("Creating noise images")
    img_sets = []
    for i in range(n_trial):
        imgs = []
        for xi in in_xis:
            img = galsim.Image(128, 128, scale=0.03)
            img.addNoise(xi)
            imgs.append(img)
        img_sets.append(imgs)

    print("Constructing `ChromaticRealGalaxy`s")
    crgs = []
    for imgs in img_sets:
        crgs.append(
            galsim.ChromaticRealGalaxy.makeFromImages(imgs,
                                                      bands,
                                                      in_PSF,
                                                      in_xis,
                                                      SEDs=SEDs,
                                                      maxk=maxk))

    print("Convolving by output PSF")
    objs = [galsim.Convolve(crg, out_PSF) for crg in crgs]

    with assert_raises(galsim.GalSimError):
        noise = objs[0].noise  # Invalid before drawImage is called

    print("Drawing through output filter")
    out_imgs = [
        obj.drawImage(visband, nx=30, ny=30, scale=0.1) for obj in objs
    ]

    noise = objs[0].noise

    print("Measuring images' correlation functions")
    xi_obs = galsim.correlatednoise.CorrelatedNoise(out_imgs[0])
    for img in out_imgs[1:]:
        xi_obs += galsim.correlatednoise.CorrelatedNoise(img)
    xi_obs /= n_trial
    xi_obs_img = galsim.Image(30, 30, scale=0.1)
    xi_obs.drawImage(xi_obs_img)
    noise_img = galsim.Image(30, 30, scale=0.1)
    noise.drawImage(noise_img)

    print("Predicted/Observed variance:",
          noise.getVariance() / xi_obs.getVariance())
    print("Predicted/Observed xlag-1 covariance:",
          noise_img.array[14, 15] / xi_obs_img.array[14, 15])
    print("Predicted/Observed ylag-1 covariance:",
          noise_img.array[15, 14] / xi_obs_img.array[15, 14])
    # Just test that the covariances for nearest neighbor pixels are accurate.
    np.testing.assert_allclose(noise_img.array[14:17, 14:17],
                               xi_obs_img.array[14:17, 14:17],
                               rtol=0,
                               atol=noise.getVariance() * tol)
Exemplo n.º 6
0
def get_CRG(cat, rng, row):
    """Create CRG for a given input parametrs form catsim.
    Bulge + Disk galaxy is created, convolved with HST PSF, drawn in HST V and
    I bands for 1 second exposure. Correlated noise (from AEGIS images)
    is added to each image. SNR in a gaussian elliptical aperture is computed.
    cgr1: The galaxy +psf images + noise correlation function is provided as
    input to CRG with default polynomial SEDs.
    crg2: same as crg1 except, the input galaxy images are padded with noise.
    This enables us to to draw the CRG image larger than the input image,
    and not have boundary edges.
    crg3: same as crg2 except the SEDS of bulge and disk are provided as input
    to CRG.
    @cat    catsim row containig catsim galaxy parametrs.
    @rng    random number generator.
    @row    astropy table to save measurents.
    """
    #  HST scale
    scale = 0.03
    area = 4.437 * 10000  # np.pi * (2.4 * 100 / 2.)**2
    v_exptime = 1  # 2260
    i_exptime = 1  # 2100
    psf_sig = 0.06
    nx, ny = get_npix(cat, scale, psf_sig)
    print "Number of HST pixels:", nx, ny
    b_r, b_g = a_b2re_e(cat['a_b'], cat['b_b'])
    d_r, d_g = a_b2re_e(cat['a_d'], cat['b_d'])
    b_s = galsim.Shear(g=b_g, beta=cat['pa_bulge'] * galsim.degrees)
    d_s = galsim.Shear(g=d_g, beta=cat['pa_disk'] * galsim.degrees)
    input_p = cg_fn.Eu_Args(scale=scale,
                            redshift=cat['redshift'],
                            disk_n=cat['bulge_n'],
                            bulge_n=cat['disk_n'],
                            disk_HLR=d_r,
                            bulge_HLR=b_r,
                            bulge_e=[b_s.e1, b_s.e2],
                            disk_e=[d_s.e1, d_s.e2],
                            psf_sig_o=0.071,
                            psf_w_o=806,
                            bulge_frac=0.5)
    input_p.T_flux = 2
    gal, PSF, con, seds = get_gal(input_p, cat, get_seds=True)
    # get bandpass
    V = cg_fn.get_HST_Bandpass('F606W')
    I = cg_fn.get_HST_Bandpass('F814W')
    c_sed = seds[0] + seds[1]
    temp_d = seds[1] * cat['fluxnorm_disk']
    temp_b = seds[0] * cat['fluxnorm_bulge']
    b_sed_mag = [temp_b.calculateMagnitude(V), temp_b.calculateMagnitude(I)]
    d_sed_mag = [temp_d.calculateMagnitude(V), temp_d.calculateMagnitude(I)]
    row['b_mag'] = b_sed_mag
    row['d_mag'] = d_sed_mag
    gal_im_v = con.drawImage(V,
                             nx=nx,
                             ny=ny,
                             scale=scale,
                             area=area,
                             exptime=v_exptime)
    gal_im_i = con.drawImage(I,
                             nx=nx,
                             ny=ny,
                             scale=scale,
                             area=area,
                             exptime=i_exptime)
    flux = np.array([gal_im_v.array.sum(), gal_im_i.array.sum()])
    snr_num = np.array([np.sum(gal_im_v.array**2), np.sum(gal_im_i.array**2)])
    # correlated noise to add to image
    noise_v = galsim.getCOSMOSNoise(file_name='data/acs_V_unrot_sci_cf.fits',
                                    rng=rng)
    noise_i = galsim.getCOSMOSNoise(file_name='data/acs_I_unrot_sci_cf.fits',
                                    rng=rng)
    # Add noise
    gal_im_v.addNoise(noise_v)
    gal_im_i.addNoise(noise_i)
    var_v = noise_v.getVariance()
    var_i = noise_i.getVariance()
    var = np.array([var_v, var_i])
    # Compute sn_ellip_gauss
    try:
        res_v = galsim.hsm.FindAdaptiveMom(gal_im_v)
        res_i = galsim.hsm.FindAdaptiveMom(gal_im_i)
        aperture_noise_v = np.sqrt(var_v * 2 * np.pi *
                                   (res_v.moments_sigma**2))
        aperture_noise_i = np.sqrt(var_i * 2 * np.pi *
                                   (res_i.moments_sigma**2))
        sn_ellip_gauss_v = res_v.moments_amp / aperture_noise_v
        sn_ellip_gauss_i = res_i.moments_amp / aperture_noise_i
    except:
        sn_ellip_gauss_v = -10
        sn_ellip_gauss_i = -10
    row['HST_sn_ellip_gauss'] = np.array([sn_ellip_gauss_v, sn_ellip_gauss_i])
    row['HST_noise_var'] = var
    row['HST_flux'] = flux
    row['HST_SNR'] = np.sqrt(snr_num / var)
    # covariance function for CRG input
    xi_v = galsim.getCOSMOSNoise(file_name='data/acs_V_unrot_sci_cf.fits',
                                 variance=var_v,
                                 rng=rng)
    xi_i = galsim.getCOSMOSNoise(file_name='data/acs_I_unrot_sci_cf.fits',
                                 variance=var_i,
                                 rng=rng)
    psf_v = cg_fn.get_eff_psf(PSF, c_sed, V)
    psf_i = cg_fn.get_eff_psf(PSF, c_sed, I)
    eff_PSFs = [psf_v, psf_i]
    print "Creating CRG with noise padding"
    cg_size = int(
        max(cat['BulgeHalfLightRadius'], cat['DiskHalfLightRadius'],
            2 * psf_sig) * 12)
    print "pad size", cg_size
    intp_gal_v = galsim.InterpolatedImage(gal_im_v,
                                          noise_pad=noise_v,
                                          noise_pad_size=cg_size)
    gal_im_v_pad = intp_gal_v._pad_image
    intp_gal_i = galsim.InterpolatedImage(gal_im_i,
                                          noise_pad=noise_i,
                                          noise_pad_size=cg_size)
    gal_im_i_pad = intp_gal_i._pad_image
    print "CRG input im shape ", gal_im_v_pad.array.shape[0] * scale
    #  Polynomial SEDs
    images = [gal_im_v_pad, gal_im_i_pad]
    crg1 = galsim.ChromaticRealGalaxy.makeFromImages(images=images,
                                                     bands=[V, I],
                                                     xis=[xi_v, xi_i],
                                                     PSFs=eff_PSFs)
    return crg1
Exemplo n.º 7
0
import numpy as np
import galsim
import matplotlib.pyplot as plt

# For information on where to download the .pkl file below, see the python script
# `devel/external/hst/make_cosmos_cfimage.py`
NOISEIMFILE = "acs_I_unrot_sci_20_noisearrays.pkl"  # Input pickled list filename
CFIMFILE_SUB = "acs_I_unrot_sci_20_cf_subtracted.fits" # Output image of correlation function (sub)
CFIMFILE_UNS = "acs_I_unrot_sci_20_cf_unsubtracted.fits" # Output image of correlation function

RSEED = 12334566

ud = galsim.UniformDeviate(RSEED)

# Case 1: subtract_mean=True; Case 2: subtract_mean=False
cn1 = galsim.getCOSMOSNoise(ud, CFIMFILE_SUB, dx_cosmos=1.)
cn2 = galsim.getCOSMOSNoise(ud, CFIMFILE_UNS, dx_cosmos=1.)

testim1 = galsim.ImageD(7, 7)
testim2 = galsim.ImageD(7, 7)
var1 = 0.
var2 = 0.

noisearrays = cPickle.load(open(NOISEIMFILE, 'rb'))
for noisearray, i in zip(noisearrays, range(len(noisearrays))):
    noise1 = galsim.ImageViewD((noisearray.copy()).astype(np.float64), scale=1.)
    noise2 = galsim.ImageViewD((noisearray.copy()).astype(np.float64), scale=1.)
    cn1.applyWhiteningTo(noise1)
    cn2.applyWhiteningTo(noise2)
    var1 += noise1.array.var()
    var2 += noise2.array.var()
import numpy as np
import galsim

# Use a deterministic random number generator so we don't fail tests because of rare flukes
# in the random numbers.
rseed=12345

smallim_size = 16 # size of image when we test correlated noise properties using small inputs
largeim_size = 12 * smallim_size # ditto, but when we need a larger image

if __name__ == "__main__":

    t1 = time.time()
    gd = galsim.GaussianDeviate(rseed)
    dx_cosmos=0.03 # Non-unity, non-default value to be used below
    cn = galsim.getCOSMOSNoise(rng=gd, dx_cosmos=dx_cosmos)
    cn.setVariance(1000.) # Again chosen to be non-unity
    # Define a PSF with which to convolve the noise field, one WITHOUT 2-fold rotational symmetry
    # (see test_autocorrelate in test_SBProfile.py for more info as to why this is relevant)
    # Make a relatively realistic mockup of a GREAT3 target image
    lam_over_diam_cosmos = (814.e-9 / 2.4) * (180. / np.pi) * 3600. # ~lamda/D in arcsec
    lam_over_diam_ground = lam_over_diam_cosmos * 2.4 / 4. # Generic 4m at same lambda
    psf_cosmos = galsim.Convolve([
        galsim.Airy(lam_over_diam=lam_over_diam_cosmos, obscuration=0.4), galsim.Pixel(0.05)])
    psf_ground = galsim.Convolve([
        galsim.Kolmogorov(fwhm=0.8), galsim.Pixel(0.18),
        galsim.OpticalPSF(lam_over_diam=lam_over_diam_ground, coma2=0.4, defocus=-0.6)])
    psf_shera = galsim.Convolve([
        psf_ground, (galsim.Deconvolve(psf_cosmos)).createSheared(g1=0.03, g2=-0.01)])
    # Then define the convolved cosmos correlated noise model
    conv_cn = cn.copy()
Exemplo n.º 9
0
def test_CRG_noise(args):
    """Test noise propagation in ChromaticRealGalaxy
    """
    t0 = time.time()

    print("Constructing chromatic PSFs")
    in_PSF = galsim.ChromaticAiry(lam=700., diam=2.4)
    out_PSF = galsim.ChromaticAiry(lam=700., diam=1.2)

    print("Constructing filters and SEDs")
    waves = np.arange(550.0, 900.1, 10.0)
    visband = galsim.Bandpass(galsim.LookupTable(waves,
                                                 np.ones_like(waves),
                                                 interpolant='linear'),
                              wave_type='nm')
    split_points = np.linspace(550.0, 900.0, args.Nim + 1, endpoint=True)
    bands = [
        visband.truncate(blue_limit=blim, red_limit=rlim)
        for blim, rlim in zip(split_points[:-1], split_points[1:])
    ]

    maxk = max([
        out_PSF.evaluateAtWavelength(waves[0]).maxK(),
        out_PSF.evaluateAtWavelength(waves[-1]).maxK()
    ])

    SEDs = [
        galsim.SED(galsim.LookupTable(waves, waves**i, interpolant='linear'),
                   flux_type='fphotons',
                   wave_type='nm').withFlux(1.0, visband)
        for i in range(args.NSED)
    ]

    print("Constructing input noise correlation functions")
    rng = galsim.BaseDeviate(args.seed)
    in_xis = [
        galsim.getCOSMOSNoise(cosmos_scale=args.in_scale,
                              rng=rng).dilate(1 + i * 0.05).rotate(
                                  5 * i * galsim.degrees)
        for i in range(args.Nim)
    ]

    print("Creating noise images")
    img_sets = []
    for i in range(args.Ntrial):
        imgs = []
        for j, xi in enumerate(in_xis):
            img = galsim.Image(args.in_Nx, args.in_Nx, scale=args.in_scale)
            img.addNoise(xi)
            imgs.append(img)
        img_sets.append(imgs)

    print("Constructing `ChromaticRealGalaxy`s")
    crgs = []
    with ProgressBar(len(img_sets)) as bar:
        for imgs in img_sets:
            crgs.append(
                galsim.ChromaticRealGalaxy.makeFromImages(imgs,
                                                          bands,
                                                          in_PSF,
                                                          in_xis,
                                                          SEDs=SEDs,
                                                          maxk=maxk))
            bar.update()

    print("Convolving by output PSF")
    objs = [galsim.Convolve(crg, out_PSF) for crg in crgs]

    print("Drawing through output filter")
    out_imgs = [
        obj.drawImage(visband,
                      nx=args.out_Nx,
                      ny=args.out_Nx,
                      scale=args.out_scale,
                      iimult=args.iimult) for obj in objs
    ]

    noise = objs[0].noise

    print("Measuring images' correlation functions")
    xi_obs = galsim.correlatednoise.CorrelatedNoise(out_imgs[0])
    for img in out_imgs[1:]:
        xi_obs += galsim.correlatednoise.CorrelatedNoise(img)
    xi_obs /= args.Ntrial
    xi_obs_img = galsim.Image(args.out_Nx, args.out_Nx, scale=args.out_scale)
    xi_obs.drawImage(xi_obs_img)

    print("Observed image variance: ", xi_obs.getVariance())
    print("Predicted image variance: ", noise.getVariance())
    print("Predicted/Observed variance:",
          noise.getVariance() / xi_obs.getVariance())

    print("Took {} seconds".format(time.time() - t0))

    if args.plot:
        import matplotlib.pyplot as plt
        out_array = (np.arange(args.out_Nx) - args.out_Nx / 2) * args.out_scale
        out_extent = [
            -args.out_Nx * args.out_scale / 2,
            args.out_Nx * args.out_scale / 2,
            -args.out_Nx * args.out_scale / 2, args.out_Nx * args.out_scale / 2
        ]

        fig = plt.figure(figsize=(5, 5))

        # Sample image
        ax = fig.add_subplot(111)
        ax.imshow(out_imgs[0].array, extent=out_extent)
        ax.set_title("sample output image")
        ax.set_xlabel("x")
        ax.set_ylabel("y")
        # ax.colorbar()
        fig.show()

        # 2D correlation functions
        fig = plt.figure(figsize=(10, 10))
        ax1 = fig.add_subplot(221)
        noise_img = galsim.Image(args.out_Nx,
                                 args.out_Nx,
                                 scale=args.out_scale)
        noise.drawImage(noise_img)
        ax1.imshow(np.log10(np.abs(noise_img.array)), extent=out_extent)
        ax1.set_title("predicted covariance function")
        ax1.set_xlabel(r"$\Delta x$")
        ax1.set_ylabel(r"$\Delta y$")
        ax2 = fig.add_subplot(222)
        ax2.imshow(np.log10(np.abs(xi_obs_img.array)), extent=out_extent)
        ax2.set_title("observed covariance function")
        ax2.set_xlabel(r"$\Delta x$")
        ax2.set_ylabel(r"$\Delta y$")

        # 1D slide through correlation functions
        ax3 = fig.add_subplot(223)
        ax3.plot(out_array,
                 noise_img.array[args.out_Nx / 2, :],
                 label="prediction",
                 color='red')
        ax3.plot(out_array,
                 xi_obs_img.array[args.out_Nx / 2, :],
                 label="observation",
                 color='blue')
        ax3.legend(loc='best')
        ax3.set_xlabel(r"$\Delta x$")
        ax3.set_ylabel(r"$\xi$")

        ax4 = fig.add_subplot(224)
        ax4.plot(out_array,
                 noise_img.array[args.out_Nx / 2, :],
                 label="prediction",
                 color='red')
        ax4.plot(out_array,
                 xi_obs_img.array[args.out_Nx / 2, :],
                 label="observation",
                 color='blue')
        ax4.plot(out_array,
                 -noise_img.array[args.out_Nx / 2, :],
                 ls=':',
                 color='red')
        ax4.plot(out_array,
                 -xi_obs_img.array[args.out_Nx / 2, :],
                 ls=':',
                 color='blue')
        ax4.legend(loc='best')
        ax4.set_yscale('log')
        ax4.set_xlabel(r"$\Delta x$")
        ax4.set_ylabel(r"$\xi$")

        plt.tight_layout()
        plt.show()
Exemplo n.º 10
0
def test_convolve_cosmos():
    """Test that a COSMOS noise field convolved with a ground based PSF-style kernel matches the
    output of the correlated noise model modified with the convolveWith method.
    """
    t1 = time.time()
    gd = galsim.GaussianDeviate(rseed)
    dx_cosmos=0.03 # Non-unity, non-default value to be used below
    cn = galsim.getCOSMOSNoise(
        gd, '../examples/data/acs_I_unrot_sci_20_cf.fits', dx_cosmos=dx_cosmos)
    cn.setVariance(300.) # Again chosen to be non-unity and so as to produce ~unity output variance
    # Define a PSF with which to convolve the noise field, one WITHOUT 2-fold rotational symmetry
    # (see test_autocorrelate in test_SBProfile.py for more info as to why this is relevant)
    # Make a relatively realistic mockup of a GREAT3 target image
    lam_over_diam_cosmos = (814.e-9 / 2.4) * (180. / np.pi) * 3600. # ~lamda/D in arcsec
    lam_over_diam_ground = lam_over_diam_cosmos * 2.4 / 4. # Generic 4m at same lambda
    psf_cosmos = galsim.Convolve([
        galsim.Airy(lam_over_diam=lam_over_diam_cosmos, obscuration=0.4), galsim.Pixel(0.05)])
    psf_ground = galsim.Convolve([
        galsim.Kolmogorov(fwhm=0.8), galsim.Pixel(0.18),
        galsim.OpticalPSF(lam_over_diam=lam_over_diam_ground, coma2=0.4, defocus=-0.6)])
    psf_shera = galsim.Convolve([
        psf_ground, (galsim.Deconvolve(psf_cosmos)).createSheared(g1=0.03, g2=-0.01)])
    # Then define the convolved cosmos correlated noise model
    conv_cn = cn.copy()
    conv_cn.convolveWith(psf_shera)
    # Then draw the correlation function for this correlated noise as the reference
    refim = galsim.ImageD(smallim_size, smallim_size)
    conv_cn.draw(refim, dx=0.18)
    # Now start the test...
    # First we generate a COSMOS noise field (cosimage), read it into an InterpolatedImage and
    # then convolve it with psf, making sure we pad the edges
    interp=galsim.Linear(tol=1.e-4) # interpolation kernel to use in making convimages
    # Number of tests needs to be a little larger to beat down noise here, but see the script
    # in devel/external/test_cf/test_cf_convolution_detailed.py
    cosimage_padded = galsim.ImageD(
        (2 * smallim_size) * 6 + 256, # Note 6 here since 0.18 = 6 * 0.03
        (2 * smallim_size) * 6 + 256, # large image to beat down noise + padding
        scale = dx_cosmos)            # Use COSMOS pixel scale
    cosimage_padded.addNoise(cn) # Add cosmos noise
    # Put this noise into a GSObject and then convolve
    imobj_padded = galsim.InterpolatedImage(
        cosimage_padded, calculate_stepk=False, calculate_maxk=False,
        normalization='sb', dx=dx_cosmos, x_interpolant=interp)
    cimobj_padded = galsim.Convolve(imobj_padded, psf_shera)

    # We draw, calculate a correlation function for the resulting field, and repeat to get an
    # average over nsum_test trials
    convimage = galsim.ImageD(2 * smallim_size, 2 * smallim_size)
    cimobj_padded.draw(convimage, dx=0.18, normalization='sb')
    cn_test = galsim.CorrelatedNoise(
        gd, convimage, dx=0.18, correct_periodicity=True, subtract_mean=False)
    testim = galsim.ImageD(smallim_size, smallim_size)
    cn_test.draw(testim, dx=0.18)
    # Start some lists to store image info
    conv_list = [convimage.array.copy()] # Don't forget Python reference/assignment semantics, we
                                         # zero convimage and write over it later!
    mnsq_list = [np.mean(convimage.array**2)]
    var_list = [convimage.array.var()]
    #nsum_test = 500 - uncomment this line to pass test below at 2dp
    for i in range(nsum_test - 1):
        cosimage_padded.setZero()
        cosimage_padded.addNoise(cn)
        imobj_padded = galsim.InterpolatedImage(
            cosimage_padded, calculate_stepk=False, calculate_maxk=False,
            normalization='sb', dx=dx_cosmos, x_interpolant=interp)
        cimobj_padded = galsim.Convolve(imobj_padded, psf_shera) 
        convimage.setZero() # See above 
        # Draw convolved image into convimage
        cimobj_padded.draw(convimage, dx=0.18, normalization='sb')
        conv_list.append(convimage.array.copy()) # See above
        mnsq_list.append(np.mean(convimage.array**2))
        var_list.append(convimage.array.var())
        cn_test = galsim.CorrelatedNoise(
            gd, convimage, dx=0.18, correct_periodicity=True, subtract_mean=False) 
        cn_test.draw(testim, dx=0.18, add_to_image=True)
        del imobj_padded
        del cimobj_padded
        del cn_test

    mnsq_individual = sum(mnsq_list) / float(nsum_test)
    var_individual = sum(var_list) / float(nsum_test)
    mnsq_individual = sum(mnsq_list) / float(nsum_test)
    testim /= float(nsum_test) # Take average CF of trials   
    conv_array = np.asarray(conv_list)
    mnsq_all = np.mean(conv_array**2)
    var_all = conv_array.var()
    print "Mean square estimate from avg. of individual field mean squares = "+str(mnsq_individual)
    print "Mean square estimate from all fields = "+str(mnsq_all)
    print "Ratio of mean squares = %e" % (mnsq_individual / mnsq_all)
    print "Variance estimate from avg. of individual field variances = "+str(var_individual)
    print "Variance estimate from all fields = "+str(var_all)
    print "Ratio of variances = %e" % (var_individual / var_all)
    print "Zero lag CF from avg. of individual field CFs = "+str(testim.array[8, 8])
    print "Zero lag CF in reference case = "+str(refim.array[8, 8])
    print "Ratio of zero lag CFs = %e" % (testim.array[8, 8] / refim.array[8, 8])
    print "Printing analysis of central 4x4 of CF:"
    # Show ratios etc in central 4x4 where CF is definitely non-zero
    print 'mean diff = ',np.mean(testim.array[4:12, 4:12] - refim.array[4:12, 4:12])
    print 'var diff = ',np.var(testim.array[4:12, 4:12] - refim.array[4:12, 4:12])
    print 'min diff = ',np.min(testim.array[4:12, 4:12] - refim.array[4:12, 4:12])
    print 'max diff = ',np.max(testim.array[4:12, 4:12] - refim.array[4:12, 4:12])
    print 'mean ratio = %e' % np.mean(testim.array[4:12, 4:12] / refim.array[4:12, 4:12])
    print 'var ratio = ',np.var(testim.array[4:12, 4:12] / refim.array[4:12, 4:12])
    print 'min ratio = %e' % np.min(testim.array[4:12, 4:12] / refim.array[4:12, 4:12])
    print 'max ratio = %e' % np.max(testim.array[4:12, 4:12] / refim.array[4:12, 4:12])

    # Test (this is a crude regression test at best, for a much more precise test of this behaviour
    # see devel/external/test_cf/test_cf_convolution_detailed.py)
    np.testing.assert_array_almost_equal(
        testim.array, refim.array, decimal=1,#decimal_approx, - if you want to pass at 2dp, make
                                             # nsum_test=500 above, takes ~100s on a fast laptop
        err_msg="Convolved COSMOS noise fields do not match the convolved correlated noise model.")
    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(), t2 - t1)
import numpy as np
import galsim

# Use a deterministic random number generator so we don't fail tests because of rare flukes
# in the random numbers.
rseed=12345

smallim_size = 16 # size of image when we test correlated noise properties using small inputs
largeim_size = 12 * smallim_size # ditto, but when we need a larger image

if __name__ == "__main__":

    t1 = time.time()
    gd = galsim.GaussianDeviate(rseed)
    dx_cosmos=0.03 # Non-unity, non-default value to be used below
    cn = galsim.getCOSMOSNoise(
        gd, '../../../examples/data/acs_I_unrot_sci_20_cf.fits', dx_cosmos=dx_cosmos)
    cn.setVariance(1000.) # Again chosen to be non-unity
    # Define a PSF with which to convolve the noise field, one WITHOUT 2-fold rotational symmetry
    # (see test_autocorrelate in test_SBProfile.py for more info as to why this is relevant)
    # Make a relatively realistic mockup of a GREAT3 target image
    lam_over_diam_cosmos = (814.e-9 / 2.4) * (180. / np.pi) * 3600. # ~lamda/D in arcsec
    lam_over_diam_ground = lam_over_diam_cosmos * 2.4 / 4. # Generic 4m at same lambda
    psf_cosmos = galsim.Convolve([
        galsim.Airy(lam_over_diam=lam_over_diam_cosmos, obscuration=0.4), galsim.Pixel(0.05)])
    psf_ground = galsim.Convolve([
        galsim.Kolmogorov(fwhm=0.8), galsim.Pixel(0.18),
        galsim.OpticalPSF(lam_over_diam=lam_over_diam_ground, coma2=0.4, defocus=-0.6)])
    psf_shera = galsim.Convolve([
        psf_ground, (galsim.Deconvolve(psf_cosmos)).createSheared(g1=0.03, g2=-0.01)])
    # Then define the convolved cosmos correlated noise model
    conv_cn = cn.copy()
Exemplo n.º 12
0
def draw_galaxies(
        data_dir=None,
        generative_model='https://raw.githubusercontent.com/EiffL/GalSim-Hub/master/modules/generative_model.tar.gz',
        batch_size=1024,
        n_batches=None,
        pool_size=12):
    """
    This function will draw in postage stamps a sample of galaxies using both
    the real COSMOS galaxy catalog and a given generative model, it outputs
    """

    cosmos_cat = galsim.COSMOSCatalog(dir=data_dir)
    cosmos_noise = galsim.getCOSMOSNoise()

    # Generating galaxies from the model by batch
    gal_model = GenerativeGalaxyModel(generative_model)
    sims_stamps = []
    cosmos_stamps = []
    param_stamps = []
    idents = []

    if n_batches is None:
        n_batches = len(cosmos_cat.orig_index) // batch_size

    # Process galaxies by batches
    for i in range(n_batches):
        inds = np.arange(i * batch_size, (i + 1) * batch_size)
        print("Batch %d" % i)
        # Generate uncovolved light profiles
        sim_galaxies = gal_model.sample(
            cat=cosmos_cat.param_cat[cosmos_cat.orig_index[inds]])
        indices = [(j, k) for j, k in enumerate(inds)]

        # Draw galaxies on postage stamps
        engine = partial(_draw_galaxies,
                         cosmos_cat=cosmos_cat,
                         sim_galaxies=sim_galaxies,
                         cosmos_noise=cosmos_noise)
        if pool_size is None:
            res = []
            for ind in indices:
                res.append(engine(ind))
        else:
            with Pool(pool_size) as p:
                res = p.map(engine, indices)

        # Extract the postage stamps into separate lists, discarding the ones
        # that failed
        for k, im_sims, im_cosmos, im_param, flag in res:
            if flag:
                sims_stamps.append(im_sims)
                cosmos_stamps.append(im_cosmos)
                param_stamps.append(im_param)
                idents.append(
                    cosmos_cat.param_cat[cosmos_cat.orig_index[k]]['IDENT'])

    # Puts all images into one big table
    table = Table([
        np.array(idents),
        np.stack(cosmos_stamps),
        np.stack(sims_stamps),
        np.stack(param_stamps)
    ],
                  names=['IDENT', 'real', 'mock', 'param'])

    # Merge with the cosmos catalog data for convenience
    table = join(cosmos_cat.param_cat, table, keys=['IDENT'])

    return table
Exemplo n.º 13
0
def test_whiten():
    """Test the options in config to whiten images
    """
    real_gal_dir = os.path.join('..','examples','data')
    real_gal_cat = 'real_galaxy_catalog_23.5_example.fits'
    config = {
        'image' : {
            'type' : 'Single',
            'random_seed' : 1234,
            'pixel_scale' : 0.05,
        },
        'stamp' : {
            'type' : 'Basic',
            'size' : 32,
        },
        'gal' : {
            'type' : 'RealGalaxy',
            'index' : 79,
            'flux' : 100,
        },
        'psf' : {  # This is really slow if we don't convolve by a PSF.
            'type' : 'Gaussian',
            'sigma' : 0.05
        },
        'input' : {
            'real_catalog' : {
                'dir' : real_gal_dir ,
                'file_name' : real_gal_cat
            }
        }
    }

    # First build by hand (no whitening yet)
    rng = galsim.BaseDeviate(1234 + 1)
    rgc = galsim.RealGalaxyCatalog(os.path.join(real_gal_dir, real_gal_cat))
    gal = galsim.RealGalaxy(rgc, index=79, flux=100, rng=rng)
    psf = galsim.Gaussian(sigma=0.05)
    final = galsim.Convolve(gal,psf)
    im1a = final.drawImage(nx=32, ny=32, scale=0.05)

    # Compare to what config builds
    galsim.config.ProcessInput(config)
    im1b, cv1b = galsim.config.BuildStamp(config, do_noise=False)
    np.testing.assert_equal(cv1b, 0.)
    np.testing.assert_equal(im1b.array, im1a.array)

    # Now add whitening, but no noise yet.
    cv1a = final.noise.whitenImage(im1a)
    print('From whiten, current_var = ',cv1a)
    galsim.config.RemoveCurrent(config)
    config['image']['noise'] =  { 'whiten' : True, }
    im1c, cv1c = galsim.config.BuildStamp(config, do_noise=False)
    print('From BuildStamp, current_var = ',cv1c)
    np.testing.assert_equal(cv1c, cv1a)
    np.testing.assert_equal(im1c.array, im1a.array)
    rng1 = rng.duplicate()  # Save current state of rng

    # 1. Gaussian noise
    #####
    config['image']['noise'] =  {
        'type' : 'Gaussian',
        'variance' : 50,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im2a = im1a.copy()
    im2a.addNoise(galsim.GaussianNoise(sigma=math.sqrt(50-cv1a), rng=rng))
    im2b, cv2b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv2b, 50)
    np.testing.assert_almost_equal(im2b.array, im2a.array, decimal=5)

    # If whitening already added too much noise, raise an exception
    config['image']['noise']['variance'] = 1.e-5
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass

    # 2. Poisson noise
    #####
    config['image']['noise'] =  {
        'type' : 'Poisson',
        'sky_level_pixel' : 50,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im3a = im1a.copy()
    sky = 50 - cv1a
    rng.reset(rng1.duplicate())
    im3a.addNoise(galsim.PoissonNoise(sky_level=sky, rng=rng))
    im3b, cv3b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv3b, 50, decimal=5)
    np.testing.assert_almost_equal(im3b.array, im3a.array, decimal=5)

    # It's more complicated if the sky is quoted per arcsec and the wcs is not uniform.
    config2 = galsim.config.CopyConfig(config)
    galsim.config.RemoveCurrent(config2)
    config2['image']['sky_level'] = 100
    config2['image']['wcs'] =  {
        'type' : 'UVFunction',
        'ufunc' : '0.05*x + 0.001*x**2',
        'vfunc' : '0.05*y + 0.001*y**2',
    }
    del config2['image']['pixel_scale']
    del config2['wcs']
    config2['image']['noise']['symmetrize'] = 4 # Also switch to symmetrize, just to mix it up.
    del config2['image']['noise']['whiten']
    rng.reset(1234+1) # Start fresh, since redoing the whitening/symmetrizing
    wcs = galsim.UVFunction(ufunc='0.05*x + 0.001*x**2', vfunc='0.05*y + 0.001*y**2')
    im3c = galsim.Image(32,32, wcs=wcs)
    im3c = final.drawImage(im3c)
    cv3c = final.noise.symmetrizeImage(im3c,4)
    sky = galsim.Image(im3c.bounds, wcs=wcs)
    wcs.makeSkyImage(sky, 100)
    mean_sky = np.mean(sky.array)
    im3c += sky
    extra_sky = 50 - cv3c
    im3c.addNoise(galsim.PoissonNoise(sky_level=extra_sky, rng=rng))
    im3d, cv3d = galsim.config.BuildStamp(config2)
    np.testing.assert_almost_equal(cv3d, 50 + mean_sky, decimal=4)
    np.testing.assert_almost_equal(im3d.array, im3c.array, decimal=5)

    config['image']['noise']['sky_level_pixel'] = 1.e-5
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass

    # 3. CCDNoise
    #####
    config['image']['noise'] =  {
        'type' : 'CCD',
        'sky_level_pixel' : 25,
        'read_noise' : 5,
        'gain' : 1,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im4a = im1a.copy()
    rn = math.sqrt(25-cv1a)
    rng.reset(rng1.duplicate())
    im4a.addNoise(galsim.CCDNoise(sky_level=25, read_noise=rn, gain=1, rng=rng))
    im4b, cv4b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv4b, 50, decimal=5)
    np.testing.assert_almost_equal(im4b.array, im4a.array, decimal=5)

    # Repeat with gain != 1
    config['image']['noise']['gain'] = 3.7
    galsim.config.RemoveCurrent(config)
    im5a = im1a.copy()
    rn = math.sqrt(25-cv1a * 3.7**2)
    rng.reset(rng1.duplicate())
    im5a.addNoise(galsim.CCDNoise(sky_level=25, read_noise=rn, gain=3.7, rng=rng))
    im5b, cv5b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv5b, 50, decimal=5)
    np.testing.assert_almost_equal(im5b.array, im5a.array, decimal=5)

    # And again with a non-trivial sky image
    galsim.config.RemoveCurrent(config2)
    config2['image']['noise'] = config['image']['noise']
    config2['image']['noise']['symmetrize'] = 4
    del config2['image']['noise']['whiten']
    rng.reset(1234+1)
    im5c = galsim.Image(32,32, wcs=wcs)
    im5c = final.drawImage(im5c)
    cv5c = final.noise.symmetrizeImage(im5c, 4)
    sky = galsim.Image(im5c.bounds, wcs=wcs)
    wcs.makeSkyImage(sky, 100)
    mean_sky = np.mean(sky.array)
    im5c += sky
    rn = math.sqrt(25-cv5c * 3.7**2)
    im5c.addNoise(galsim.CCDNoise(sky_level=25, read_noise=rn, gain=3.7, rng=rng))
    im5d, cv5d = galsim.config.BuildStamp(config2)
    np.testing.assert_almost_equal(cv5d, 50 + mean_sky, decimal=4)
    np.testing.assert_almost_equal(im5d.array, im5c.array, decimal=5)

    config['image']['noise']['sky_level_pixel'] = 1.e-5
    config['image']['noise']['read_noise'] = 0
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass

    # 4. COSMOSNoise
    #####
    file_name = os.path.join(galsim.meta_data.share_dir,'acs_I_unrot_sci_20_cf.fits')
    config['image']['noise'] =  {
        'type' : 'COSMOS',
        'file_name' : file_name,
        'variance' : 50,
        'whiten' : True,
    }
    galsim.config.RemoveCurrent(config)
    im6a = im1a.copy()
    rng.reset(rng1.duplicate())
    noise = galsim.getCOSMOSNoise(file_name=file_name, variance=50, rng=rng)
    noise -= galsim.UncorrelatedNoise(cv1a, rng=rng, wcs=noise.wcs)
    im6a.addNoise(noise)
    im6b, cv6b = galsim.config.BuildStamp(config)
    np.testing.assert_almost_equal(cv6b, 50, decimal=5)
    np.testing.assert_almost_equal(im6b.array, im6a.array, decimal=5)

    config['image']['noise']['variance'] = 1.e-5
    del config['_current_cn_tag']
    try:
        np.testing.assert_raises(RuntimeError, galsim.config.BuildStamp,config)
    except ImportError:
        pass
Exemplo n.º 14
0
def test_CRG(args):
    """Predict an LSST or Euclid image given HST images of a galaxy with color gradients."""
    t0 = time.time()

    print("Constructing chromatic PSFs")
    in_PSF = galsim.ChromaticAiry(lam=700, diam=2.4)
    if args.lsst_psf:
        out_PSF = galsim.ChromaticAtmosphere(galsim.Kolmogorov(fwhm=0.6), 500.0,
                                             zenith_angle=0*galsim.degrees,
                                             parallactic_angle=0.0*galsim.degrees)
    else:
        out_PSF = galsim.ChromaticAiry(lam=700, diam=1.2)  # Euclid-like

    print("Constructing filters and SEDs")
    waves = np.arange(550.0, 900.1, 10.0)
    visband = galsim.Bandpass(galsim.LookupTable(waves, np.ones_like(waves), interpolant='linear'), wave_type='nm')
    split_points = np.linspace(550.0, 900.0, args.Nim+1, endpoint=True)
    bands = [visband.truncate(blue_limit=blim, red_limit=rlim)
             for blim, rlim in zip(split_points[:-1], split_points[1:])]
    outband = visband.truncate(blue_limit=args.out_blim, red_limit=args.out_rlim)

    maxk = max([out_PSF.evaluateAtWavelength(waves[0]).maxK(),
                out_PSF.evaluateAtWavelength(waves[-1]).maxK()])

    SEDs = [galsim.SED(galsim.LookupTable(waves, waves**i, interpolant='linear'), wave_type='nm',
                       flux_type='fphotons').withFlux(1.0, visband)
            for i in range(args.NSED)]

    print("Construction input noise correlation functions")
    rng = galsim.BaseDeviate(args.seed)
    in_xis = [galsim.getCOSMOSNoise(cosmos_scale=args.in_scale, rng=rng)
              .dilate(1 + i * 0.05)
              .rotate(30 * i * galsim.degrees)
              for i in range(args.Nim)]

    print("Constructing galaxy")
    components = [galsim.Gaussian(half_light_radius=0.3).shear(e1=0.1)]
    for i in range(1, args.Nim):
        components.append(
            galsim.Gaussian(half_light_radius=0.3+0.1*np.cos(i))
            .shear(e=0.4+np.cos(i)*0.4, beta=i*galsim.radians)
            .shift(0.4*i, -0.4*i)
        )
    gal = galsim.Add([c*s for c, s in zip(components, SEDs)])
    gal = gal.shift(-gal.centroid(visband))

    in_prof = galsim.Convolve(gal, in_PSF)
    out_prof = galsim.Convolve(gal, out_PSF)

    print("Drawing input images")
    in_Nx = args.in_Nx
    in_Ny = args.in_Ny if args.in_Ny is not None else in_Nx
    in_imgs = [in_prof.drawImage(band, nx=in_Nx, ny=in_Ny, scale=args.in_scale)
               for band in bands]
    [img.addNoiseSNR(xi, args.SNR, preserve_flux=True) for xi, img in zip(in_xis, in_imgs)]

    print("Drawing true output image")
    out_img = out_prof.drawImage(outband, nx=args.out_Nx, ny=args.out_Nx, scale=args.out_scale)

    # Now "deconvolve" the chromatic HST PSF while asserting the correct SEDs.
    print("Constructing ChromaticRealGalaxy")
    crg = galsim.ChromaticRealGalaxy.makeFromImages(
            in_imgs, bands, in_PSF, in_xis, SEDs=SEDs, maxk=maxk)
    # crg should be effectively the same thing as gal now.  Let's test.

    crg_prof = galsim.Convolve(crg, out_PSF)
    crg_img = crg_prof.drawImage(outband, nx=args.out_Nx, ny=args.out_Nx, scale=args.out_scale)
    print("Max comparison:", out_img.array.max(), crg_img.array.max())
    print("Sum comparison:", out_img.array.sum(), crg_img.array.sum())

    print("Took {} seconds".format(time.time()-t0))

    if args.plot:
        import matplotlib.pyplot as plt
        import matplotlib.gridspec as gridspec
        in_extent = [-in_Nx*args.in_scale/2,
                     in_Nx*args.in_scale/2,
                     -in_Ny*args.in_scale/2,
                     in_Ny*args.in_scale/2]
        out_extent = [-args.out_Nx*args.out_scale/2,
                      args.out_Nx*args.out_scale/2,
                      -args.out_Nx*args.out_scale/2,
                      args.out_Nx*args.out_scale/2]

        fig = plt.figure(figsize=(10, 5))
        outer_grid = gridspec.GridSpec(2, 1)

        # Input images
        inner_grid = gridspec.GridSpecFromSubplotSpec(1, args.Nim, outer_grid[0])
        for i, img in enumerate(in_imgs):
            ax = plt.Subplot(fig, inner_grid[i])
            im = ax.imshow(img.array, extent=in_extent, cmap='viridis')
            ax.set_title("band[{}] input".format(i))
            # ax.set_xticks([])
            # ax.set_yticks([])
            fig.add_subplot(ax)
            plt.colorbar(im)

        inner_grid = gridspec.GridSpecFromSubplotSpec(1, 3, outer_grid[1])
        # Output image, truth, and residual
        ax = plt.Subplot(fig, inner_grid[0])
        ax.set_title("True output")
        im = ax.imshow(out_img.array, extent=out_extent, cmap='viridis')
        # ax.set_xticks([])
        # ax.set_yticks([])
        fig.add_subplot(ax)
        plt.colorbar(im)

        ax = plt.Subplot(fig, inner_grid[1])
        ax.set_title("Reconstructed output")
        # ax.set_xticks([])
        # ax.set_yticks([])
        im = ax.imshow(crg_img.array, extent=out_extent, cmap='viridis')
        fig.add_subplot(ax)
        plt.colorbar(im)

        ax = plt.Subplot(fig, inner_grid[2])
        ax.set_title("Residual")
        ax.set_xticks([])
        ax.set_yticks([])
        resid = crg_img.array - out_img.array
        vmin, vmax = np.percentile(resid, [5.0, 95.0])
        v = np.max([np.abs(vmin), np.abs(vmax)])
        im = ax.imshow(resid, extent=out_extent, cmap='seismic', vmin=-v, vmax=v)
        fig.add_subplot(ax)
        plt.colorbar(im)

        plt.tight_layout()
        plt.show()
Exemplo n.º 15
0
def test_CRG_noise(args):
    """Test noise propagation in ChromaticRealGalaxy
    """
    t0 = time.time()

    print("Constructing chromatic PSFs")
    in_PSF = galsim.ChromaticAiry(lam=700., diam=2.4)
    out_PSF = galsim.ChromaticAiry(lam=700., diam=1.2)

    print("Constructing filters and SEDs")
    waves = np.arange(550.0, 900.1, 10.0)
    visband = galsim.Bandpass(galsim.LookupTable(waves, np.ones_like(waves), interpolant='linear'),
                              wave_type='nm')
    split_points = np.linspace(550.0, 900.0, args.Nim+1, endpoint=True)
    bands = [visband.truncate(blue_limit=blim, red_limit=rlim)
             for blim, rlim in zip(split_points[:-1], split_points[1:])]

    maxk = max([out_PSF.evaluateAtWavelength(waves[0]).maxK(),
                out_PSF.evaluateAtWavelength(waves[-1]).maxK()])

    SEDs = [galsim.SED(galsim.LookupTable(waves, waves**i, interpolant='linear'),
                       flux_type='fphotons', wave_type='nm').withFlux(1.0, visband)
            for i in range(args.NSED)]

    print("Constructing input noise correlation functions")
    rng = galsim.BaseDeviate(args.seed)
    in_xis = [galsim.getCOSMOSNoise(cosmos_scale=args.in_scale, rng=rng)
              .dilate(1 + i * 0.05)
              .rotate(5 * i * galsim.degrees)
              for i in range(args.Nim)]

    print("Creating noise images")
    img_sets = []
    for i in range(args.Ntrial):
        imgs = []
        for j, xi in enumerate(in_xis):
            img = galsim.Image(args.in_Nx, args.in_Nx, scale=args.in_scale)
            img.addNoise(xi)
            imgs.append(img)
        img_sets.append(imgs)

    print("Constructing `ChromaticRealGalaxy`s")
    crgs = []
    with ProgressBar(len(img_sets)) as bar:
        for imgs in img_sets:
            crgs.append(galsim.ChromaticRealGalaxy.makeFromImages(
                    imgs, bands, in_PSF, in_xis, SEDs=SEDs, maxk=maxk))
            bar.update()

    print("Convolving by output PSF")
    objs = [galsim.Convolve(crg, out_PSF) for crg in crgs]

    print("Drawing through output filter")
    out_imgs = [obj.drawImage(visband, nx=args.out_Nx, ny=args.out_Nx, scale=args.out_scale,
                              iimult=args.iimult)
                for obj in objs]

    noise = objs[0].noise

    print("Measuring images' correlation functions")
    xi_obs = galsim.correlatednoise.CorrelatedNoise(out_imgs[0])
    for img in out_imgs[1:]:
        xi_obs += galsim.correlatednoise.CorrelatedNoise(img)
    xi_obs /= args.Ntrial
    xi_obs_img = galsim.Image(args.out_Nx, args.out_Nx, scale=args.out_scale)
    xi_obs.drawImage(xi_obs_img)

    print("Observed image variance: ", xi_obs.getVariance())
    print("Predicted image variance: ", noise.getVariance())
    print("Predicted/Observed variance:", noise.getVariance()/xi_obs.getVariance())

    print("Took {} seconds".format(time.time()-t0))

    if args.plot:
        import matplotlib.pyplot as plt
        out_array = (np.arange(args.out_Nx) - args.out_Nx/2) * args.out_scale
        out_extent = [-args.out_Nx*args.out_scale/2,
                      args.out_Nx*args.out_scale/2,
                      -args.out_Nx*args.out_scale/2,
                      args.out_Nx*args.out_scale/2]

        fig = plt.figure(figsize=(5, 5))

        # Sample image
        ax = fig.add_subplot(111)
        ax.imshow(out_imgs[0].array, extent=out_extent)
        ax.set_title("sample output image")
        ax.set_xlabel("x")
        ax.set_ylabel("y")
        # ax.colorbar()
        fig.show()

        # 2D correlation functions
        fig = plt.figure(figsize=(10, 10))
        ax1 = fig.add_subplot(221)
        noise_img = galsim.Image(args.out_Nx, args.out_Nx, scale=args.out_scale)
        noise.drawImage(noise_img)
        ax1.imshow(np.log10(np.abs(noise_img.array)), extent=out_extent)
        ax1.set_title("predicted covariance function")
        ax1.set_xlabel(r"$\Delta x$")
        ax1.set_ylabel(r"$\Delta y$")
        ax2 = fig.add_subplot(222)
        ax2.imshow(np.log10(np.abs(xi_obs_img.array)), extent=out_extent)
        ax2.set_title("observed covariance function")
        ax2.set_xlabel(r"$\Delta x$")
        ax2.set_ylabel(r"$\Delta y$")

        # 1D slide through correlation functions
        ax3 = fig.add_subplot(223)
        ax3.plot(out_array, noise_img.array[args.out_Nx/2, :], label="prediction", color='red')
        ax3.plot(out_array, xi_obs_img.array[args.out_Nx/2, :], label="observation", color='blue')
        ax3.legend(loc='best')
        ax3.set_xlabel(r"$\Delta x$")
        ax3.set_ylabel(r"$\xi$")

        ax4 = fig.add_subplot(224)
        ax4.plot(out_array, noise_img.array[args.out_Nx/2, :], label="prediction", color='red')
        ax4.plot(out_array, xi_obs_img.array[args.out_Nx/2, :], label="observation", color='blue')
        ax4.plot(out_array, -noise_img.array[args.out_Nx/2, :], ls=':', color='red')
        ax4.plot(out_array, -xi_obs_img.array[args.out_Nx/2, :], ls=':', color='blue')
        ax4.legend(loc='best')
        ax4.set_yscale('log')
        ax4.set_xlabel(r"$\Delta x$")
        ax4.set_ylabel(r"$\xi$")

        plt.tight_layout()
        plt.show()
Exemplo n.º 16
0
def check_crg_noise(n_sed, n_im, n_trial, tol):
    print("Checking CRG noise for")
    print("n_sed = {}".format(n_sed))
    print("n_im = {}".format(n_im))
    print("n_trial = {}".format(n_trial))
    print("Constructing chromatic PSFs")
    in_PSF = galsim.ChromaticAiry(lam=700., diam=2.4)
    out_PSF = galsim.ChromaticAiry(lam=700., diam=0.6)

    print("Constructing filters and SEDs")
    waves = np.arange(550.0, 900.1, 10.0)
    visband = galsim.Bandpass(galsim.LookupTable(waves, np.ones_like(waves), interpolant='linear'),
                              wave_type='nm')
    split_points = np.linspace(550.0, 900.0, n_im+1, endpoint=True)
    bands = [visband.truncate(blue_limit=blim, red_limit=rlim)
             for blim, rlim in zip(split_points[:-1], split_points[1:])]

    maxk = max([out_PSF.evaluateAtWavelength(waves[0]).maxk,
                out_PSF.evaluateAtWavelength(waves[-1]).maxk])

    SEDs = [galsim.SED(galsim.LookupTable(waves, waves**i, interpolant='linear'),
                       flux_type='fphotons', wave_type='nm').withFlux(1.0, visband)
            for i in range(n_sed)]

    print("Constructing input noise correlation functions")
    rng = galsim.BaseDeviate(57721)
    in_xis = [galsim.getCOSMOSNoise(cosmos_scale=0.03, rng=rng)
              .dilate(1 + i * 0.05)
              .rotate(5 * i * galsim.degrees)
              for i in range(n_im)]

    print("Creating noise images")
    img_sets = []
    for i in range(n_trial):
        imgs = []
        for xi in in_xis:
            img = galsim.Image(128, 128, scale=0.03)
            img.addNoise(xi)
            imgs.append(img)
        img_sets.append(imgs)

    print("Constructing `ChromaticRealGalaxy`s")
    crgs = []
    for imgs in img_sets:
        crgs.append(galsim.ChromaticRealGalaxy.makeFromImages(
                imgs, bands, in_PSF, in_xis, SEDs=SEDs, maxk=maxk))

    print("Convolving by output PSF")
    objs = [galsim.Convolve(crg, out_PSF) for crg in crgs]

    with assert_raises(galsim.GalSimError):
        noise = objs[0].noise  # Invalid before drawImage is called

    print("Drawing through output filter")
    out_imgs = [obj.drawImage(visband, nx=30, ny=30, scale=0.1)
                for obj in objs]

    noise = objs[0].noise

    print("Measuring images' correlation functions")
    xi_obs = galsim.correlatednoise.CorrelatedNoise(out_imgs[0])
    for img in out_imgs[1:]:
        xi_obs += galsim.correlatednoise.CorrelatedNoise(img)
    xi_obs /= n_trial
    xi_obs_img = galsim.Image(30, 30, scale=0.1)
    xi_obs.drawImage(xi_obs_img)
    noise_img = galsim.Image(30, 30, scale=0.1)
    noise.drawImage(noise_img)

    print("Predicted/Observed variance:", noise.getVariance()/xi_obs.getVariance())
    print("Predicted/Observed xlag-1 covariance:", noise_img.array[14, 15]/xi_obs_img.array[14, 15])
    print("Predicted/Observed ylag-1 covariance:", noise_img.array[15, 14]/xi_obs_img.array[15, 14])
    # Just test that the covariances for nearest neighbor pixels are accurate.
    np.testing.assert_allclose(
            noise_img.array[14:17, 14:17], xi_obs_img.array[14:17, 14:17],
            rtol=0, atol=noise.getVariance()*tol)
Exemplo n.º 17
0
import galsim

# Use a deterministic random number generator so we don't fail tests because of rare flukes
# in the random numbers.
rseed = 12345

smallim_size = 16  # size of image when we test correlated noise properties using small inputs
largeim_size = 12 * smallim_size  # ditto, but when we need a larger image

if __name__ == "__main__":

    t1 = time.time()
    gd = galsim.GaussianDeviate(rseed)
    dx_cosmos = 0.03  # Non-unity, non-default value to be used below
    cn = galsim.getCOSMOSNoise(
        gd,
        '../../../examples/data/acs_I_unrot_sci_20_cf.fits',
        dx_cosmos=dx_cosmos)
    cn.setVariance(1000.)  # Again chosen to be non-unity
    # Define a PSF with which to convolve the noise field, one WITHOUT 2-fold rotational symmetry
    # (see test_autocorrelate in test_SBProfile.py for more info as to why this is relevant)
    # Make a relatively realistic mockup of a GREAT3 target image
    lam_over_diam_cosmos = (814.e-9 /
                            2.4) * (180. / np.pi) * 3600.  # ~lamda/D in arcsec
    lam_over_diam_ground = lam_over_diam_cosmos * 2.4 / 4.  # Generic 4m at same lambda
    psf_cosmos = galsim.Convolve([
        galsim.Airy(lam_over_diam=lam_over_diam_cosmos, obscuration=0.4),
        galsim.Pixel(0.05)
    ])
    psf_ground = galsim.Convolve([
        galsim.Kolmogorov(fwhm=0.8),
        galsim.Pixel(0.18),
Exemplo n.º 18
0
import numpy as np
import galsim

# Use a deterministic random number generator so we don't fail tests because of rare flukes
# in the random numbers.
rseed = 12345

smallim_size = 16  # size of image when we test correlated noise properties using small inputs
largeim_size = 12 * smallim_size  # ditto, but when we need a larger image

if __name__ == "__main__":

    t1 = time.time()
    gd = galsim.GaussianDeviate(rseed)
    dx_cosmos = 0.03  # Non-unity, non-default value to be used below
    cn = galsim.getCOSMOSNoise(rng=gd, dx_cosmos=dx_cosmos)
    cn.setVariance(1000.)  # Again chosen to be non-unity
    # Define a PSF with which to convolve the noise field, one WITHOUT 2-fold rotational symmetry
    # (see test_autocorrelate in test_SBProfile.py for more info as to why this is relevant)
    # Make a relatively realistic mockup of a GREAT3 target image
    lam_over_diam_cosmos = (814.e-9 /
                            2.4) * (180. / np.pi) * 3600.  # ~lamda/D in arcsec
    lam_over_diam_ground = lam_over_diam_cosmos * 2.4 / 4.  # Generic 4m at same lambda
    psf_cosmos = galsim.Convolve([
        galsim.Airy(lam_over_diam=lam_over_diam_cosmos, obscuration=0.4),
        galsim.Pixel(0.05)
    ])
    psf_ground = galsim.Convolve([
        galsim.Kolmogorov(fwhm=0.8),
        galsim.Pixel(0.18),
        galsim.OpticalPSF(lam_over_diam=lam_over_diam_ground,
Exemplo n.º 19
0
def test_cosmos_and_whitening():
    """Test that noise generated by an HST COSMOS correlated noise is correct and correctly
    whitened.  Includes test for a magnified, sheared, and rotated version of the COSMOS noise, and
    tests convolution with a ground-based PSF.
    """
    t1 = time.time()
    gd = galsim.GaussianDeviate(rseed)
    dx_cosmos = 7.5 # Use some non-default, non-unity value of COSMOS pixel spacing
    ccn = galsim.getCOSMOSNoise(
        gd, '../examples/data/acs_I_unrot_sci_20_cf.fits', dx_cosmos=dx_cosmos)
    # large image to beat down noise
    outimage = galsim.ImageD(3 * largeim_size, 3 * largeim_size, scale=dx_cosmos)
    outimage.addNoise(ccn)  # Add the COSMOS noise
    # Then estimate correlation function from generated noise
    cntest_correlated = galsim.CorrelatedNoise(ccn.getRNG(), outimage)
    # Check basic correlation function values of the 3x3 pixel region around (0,0)
    pos = galsim.PositionD(0., 0.)
    cf00 = ccn._profile.xValue(pos)
    cftest00 = cntest_correlated._profile.xValue(pos)
    # Test variances first
    np.testing.assert_almost_equal(
        cftest00 / cf00, 1., decimal=decimal_approx,
        err_msg="Noise field generated with COSMOS CorrelatedNoise does not approximately match "+
        "input variance")
    # Then test (1, 0), (0, 1), (1,-1) and (1,1) values
    for xpos, ypos in zip((dx_cosmos, 0., dx_cosmos, dx_cosmos), 
                          (0., dx_cosmos, -dx_cosmos, dx_cosmos)):
        pos = galsim.PositionD(xpos, ypos)
        cf = ccn._profile.xValue(pos)
        cftest = cntest_correlated._profile.xValue(pos)
        np.testing.assert_almost_equal(
            cftest / cftest00, cf / cf00, decimal=decimal_approx,
            err_msg="Noise field generated with COSMOS CorrelatedNoise does not have "+
            "approximately matching interpixel covariances")
    # Now whiten the noise field, and check that its variance and covariances are as expected
    # (non-zero distance correlations ~ 0!)
    whitened_variance = ccn.applyWhiteningTo(outimage)
    cntest_whitened = galsim.CorrelatedNoise(ccn.getRNG(), outimage) # Get the correlation function
    cftest00 = cntest_whitened._profile.xValue(galsim.PositionD(0., 0.))
    # Test variances first
    np.testing.assert_almost_equal(
        cftest00 / whitened_variance, 1., decimal=decimal_approx,
        err_msg="Noise field generated by whitening COSMOS CorrelatedNoise does not approximately "+
        "match theoretical variance")
    # Then test (1, 0), (0, 1), (1,-1) and (1,1) values
    for xpos, ypos in zip((dx_cosmos, 0., dx_cosmos, dx_cosmos), 
                          (0., dx_cosmos, -dx_cosmos, dx_cosmos)):
        pos = galsim.PositionD(xpos, ypos)
        cftest = cntest_whitened._profile.xValue(pos)
        np.testing.assert_almost_equal(
            cftest / cftest00, 0., decimal=decimal_approx,
            err_msg="Noise field generated by whitening COSMOS CorrelatedNoise does not have "+
            "approximately zero interpixel covariances")
    # Now test whitening but having first expanded and sheared the COSMOS noise correlation
    ccn_transformed = ccn.createSheared(g1=-0.03, g2=0.07)
    ccn_transformed.applyRotation(313. * galsim.degrees)
    ccn_transformed.applyExpansion(3.9)
    outimage.setZero()
    outimage.addNoise(ccn_transformed)
    wht_variance = ccn_transformed.applyWhiteningTo(outimage)  # Whiten noise correlation
    cntest_whitened = galsim.CorrelatedNoise(ccn.getRNG(), outimage) # Get the correlation function
    cftest00 = cntest_whitened._profile.xValue(galsim.PositionD(0., 0.))
    # Test variances first
    np.testing.assert_almost_equal(
        cftest00 / wht_variance, 1., decimal=decimal_approx,
        err_msg="Noise field generated by whitening rotated, sheared, magnified COSMOS "+
        "CorrelatedNoise does not approximately match theoretical variance")
    # Then test (1, 0), (0, 1), (1,-1) and (1,1) values
    for xpos, ypos in zip((dx_cosmos, 0.,  dx_cosmos, dx_cosmos), 
                          (0., dx_cosmos, -dx_cosmos, dx_cosmos)):
        pos = galsim.PositionD(xpos, ypos)
        cftest = cntest_whitened._profile.xValue(pos)
        np.testing.assert_almost_equal(
            cftest / cftest00, 0., decimal=decimal_approx,
            err_msg="Noise field generated by whitening rotated, sheared, magnified COSMOS "+
            "CorrelatedNoise does not have approximately zero interpixel covariances")
    # Then convolve with a ground-based PSF and pixel, generate some more correlated noise
    # and whiten it
    dx_ground = dx_cosmos * 9. # simulates a 0.03 arcsec * 9 = 0.27 arcsec pitch ground image
    psf_ground = galsim.Moffat(beta=3., fwhm=2.5*dx_ground) # FWHM=0.675 arcsec seeing
    pix_ground = galsim.Pixel(dx_ground)
    ccn_convolved = ccn_transformed.copy()
    # Convolve the correlated noise field with each of the psf, pix
    ccn_convolved.convolveWith(galsim.Convolve([psf_ground, pix_ground]))
    # Reset the outimage, and set its pixel scale to now be the ground-based resolution
    outimage.setZero()
    outimage.scale = dx_ground
    # Add correlated noise
    outimage.addNoise(ccn_convolved)
    # Then whiten
    wht_variance = ccn_convolved.applyWhiteningTo(outimage)
    # Then test
    cntest_whitened = galsim.CorrelatedNoise(ccn.getRNG(), outimage) # Get the correlation function
    cftest00 = cntest_whitened._profile.xValue(galsim.PositionD(0., 0.))
    # Test variances first
    np.testing.assert_almost_equal(
        cftest00 / wht_variance, 1., decimal=decimal_approx,
        err_msg="Noise field generated by whitening rotated, sheared, magnified, convolved COSMOS "+
        "CorrelatedNoise does not approximately match theoretical variance")
    # Then test (1, 0), (0, 1), (1,-1) and (1,1) values
    for xpos, ypos in zip((dx_ground, 0.,  dx_ground, dx_ground), 
                          (0., dx_ground, -dx_ground, dx_ground)):
        pos = galsim.PositionD(xpos, ypos)
        cftest = cntest_whitened._profile.xValue(pos)
        np.testing.assert_almost_equal(
            cftest / cftest00, 0., decimal=decimal_approx,
            err_msg="Noise field generated by whitening rotated, sheared, magnified, convolved "+
            "COSMOS CorrelatedNoise does not have approximately zero interpixel covariances")
    t2 = time.time()
    print 'time for %s = %.2f'%(funcname(), t2 - t1)
Exemplo n.º 20
0
def test_CRG(args):
    """Predict an LSST or Euclid image given HST images of a galaxy with color gradients."""
    t0 = time.time()

    print("Constructing chromatic PSFs")
    in_PSF = galsim.ChromaticAiry(lam=700, diam=2.4)
    if args.lsst_psf:
        out_PSF = galsim.ChromaticAtmosphere(galsim.Kolmogorov(fwhm=0.6),
                                             500.0,
                                             zenith_angle=0 * galsim.degrees,
                                             parallactic_angle=0.0 *
                                             galsim.degrees)
    else:
        out_PSF = galsim.ChromaticAiry(lam=700, diam=1.2)  # Euclid-like

    print("Constructing filters and SEDs")
    waves = np.arange(550.0, 900.1, 10.0)
    visband = galsim.Bandpass(galsim.LookupTable(waves,
                                                 np.ones_like(waves),
                                                 interpolant='linear'),
                              wave_type='nm')
    split_points = np.linspace(550.0, 900.0, args.Nim + 1, endpoint=True)
    bands = [
        visband.truncate(blue_limit=blim, red_limit=rlim)
        for blim, rlim in zip(split_points[:-1], split_points[1:])
    ]
    outband = visband.truncate(blue_limit=args.out_blim,
                               red_limit=args.out_rlim)

    maxk = max([
        out_PSF.evaluateAtWavelength(waves[0]).maxK(),
        out_PSF.evaluateAtWavelength(waves[-1]).maxK()
    ])

    SEDs = [
        galsim.SED(galsim.LookupTable(waves, waves**i, interpolant='linear'),
                   wave_type='nm',
                   flux_type='fphotons').withFlux(1.0, visband)
        for i in range(args.NSED)
    ]

    print("Construction input noise correlation functions")
    rng = galsim.BaseDeviate(args.seed)
    in_xis = [
        galsim.getCOSMOSNoise(cosmos_scale=args.in_scale,
                              rng=rng).dilate(1 + i * 0.05).rotate(
                                  30 * i * galsim.degrees)
        for i in range(args.Nim)
    ]

    print("Constructing galaxy")
    components = [galsim.Gaussian(half_light_radius=0.3).shear(e1=0.1)]
    for i in range(1, args.Nim):
        components.append(
            galsim.Gaussian(half_light_radius=0.3 + 0.1 * np.cos(i)).shear(
                e=0.4 + np.cos(i) * 0.4,
                beta=i * galsim.radians).shift(0.4 * i, -0.4 * i))
    gal = galsim.Add([c * s for c, s in zip(components, SEDs)])
    gal = gal.shift(-gal.centroid(visband))

    in_prof = galsim.Convolve(gal, in_PSF)
    out_prof = galsim.Convolve(gal, out_PSF)

    print("Drawing input images")
    in_Nx = args.in_Nx
    in_Ny = args.in_Ny if args.in_Ny is not None else in_Nx
    in_imgs = [
        in_prof.drawImage(band, nx=in_Nx, ny=in_Ny, scale=args.in_scale)
        for band in bands
    ]
    [
        img.addNoiseSNR(xi, args.SNR, preserve_flux=True)
        for xi, img in zip(in_xis, in_imgs)
    ]

    print("Drawing true output image")
    out_img = out_prof.drawImage(outband,
                                 nx=args.out_Nx,
                                 ny=args.out_Nx,
                                 scale=args.out_scale)

    # Now "deconvolve" the chromatic HST PSF while asserting the correct SEDs.
    print("Constructing ChromaticRealGalaxy")
    crg = galsim.ChromaticRealGalaxy.makeFromImages(in_imgs,
                                                    bands,
                                                    in_PSF,
                                                    in_xis,
                                                    SEDs=SEDs,
                                                    maxk=maxk)
    # crg should be effectively the same thing as gal now.  Let's test.

    crg_prof = galsim.Convolve(crg, out_PSF)
    crg_img = crg_prof.drawImage(outband,
                                 nx=args.out_Nx,
                                 ny=args.out_Nx,
                                 scale=args.out_scale)
    print("Max comparison:", out_img.array.max(), crg_img.array.max())
    print("Sum comparison:", out_img.array.sum(), crg_img.array.sum())

    print("Took {} seconds".format(time.time() - t0))

    if args.plot:
        import matplotlib.pyplot as plt
        import matplotlib.gridspec as gridspec
        in_extent = [
            -in_Nx * args.in_scale / 2, in_Nx * args.in_scale / 2,
            -in_Ny * args.in_scale / 2, in_Ny * args.in_scale / 2
        ]
        out_extent = [
            -args.out_Nx * args.out_scale / 2,
            args.out_Nx * args.out_scale / 2,
            -args.out_Nx * args.out_scale / 2, args.out_Nx * args.out_scale / 2
        ]

        fig = plt.figure(figsize=(10, 5))
        outer_grid = gridspec.GridSpec(2, 1)

        # Input images
        inner_grid = gridspec.GridSpecFromSubplotSpec(1, args.Nim,
                                                      outer_grid[0])
        for i, img in enumerate(in_imgs):
            ax = plt.Subplot(fig, inner_grid[i])
            im = ax.imshow(img.array, extent=in_extent, cmap='viridis')
            ax.set_title("band[{}] input".format(i))
            # ax.set_xticks([])
            # ax.set_yticks([])
            fig.add_subplot(ax)
            plt.colorbar(im)

        inner_grid = gridspec.GridSpecFromSubplotSpec(1, 3, outer_grid[1])
        # Output image, truth, and residual
        ax = plt.Subplot(fig, inner_grid[0])
        ax.set_title("True output")
        im = ax.imshow(out_img.array, extent=out_extent, cmap='viridis')
        # ax.set_xticks([])
        # ax.set_yticks([])
        fig.add_subplot(ax)
        plt.colorbar(im)

        ax = plt.Subplot(fig, inner_grid[1])
        ax.set_title("Reconstructed output")
        # ax.set_xticks([])
        # ax.set_yticks([])
        im = ax.imshow(crg_img.array, extent=out_extent, cmap='viridis')
        fig.add_subplot(ax)
        plt.colorbar(im)

        ax = plt.Subplot(fig, inner_grid[2])
        ax.set_title("Residual")
        ax.set_xticks([])
        ax.set_yticks([])
        resid = crg_img.array - out_img.array
        vmin, vmax = np.percentile(resid, [5.0, 95.0])
        v = np.max([np.abs(vmin), np.abs(vmax)])
        im = ax.imshow(resid,
                       extent=out_extent,
                       cmap='seismic',
                       vmin=-v,
                       vmax=v)
        fig.add_subplot(ax)
        plt.colorbar(im)

        plt.tight_layout()
        plt.show()