Exemplo n.º 1
0
 def test_model(self):
     steps_arr = []
     scores_arr = []
     for a in range(self.test_games):
         steps = 0
         game_memory = []
         game = Snake()
         _, score, snake, food = game.start()
         prev_observation = self.generate_observation(snake, food)
         for _ in range(self.goal_steps):
             done, score, snake, food, action, predictions = self._play(
                 game, snake, prev_observation)
             game_memory.append([prev_observation, action])
             if done:
                 result_string = steps + snake + food + prev_observation + predictions
                 print('-----')
                 print('Game Test', a)
                 print(result_string)
                 with open("testing.txt", "a") as file:
                     file.write(f'Test {a}\n {result_string}')
                 break
             else:
                 prev_observation = self.generate_observation(snake, food)
                 steps += 1
         steps_arr.append(steps)
         scores_arr.append(score)
     print('Average steps:', mean(steps_arr))
     print(Counter(steps_arr))
     print('Average score:', mean(scores_arr))
     print(Counter(scores_arr))
     step_str = str(mean(steps_arr))
     score_str = str(mean(scores_arr))
     with open("Stats.txt", "a") as file:
         file.write(step_str + "  ----------  " + score_str + "\n")
Exemplo n.º 2
0
 def addStatus(self, Snake2, Score2, food2, frame_iteration, direction,
               old_record):
     Snake = []
     food = [food2.x, food2.y]
     for itemSnack2 in Snake2:
         item = [itemSnack2.x, itemSnack2.y]
         Snake.append(item)
     self.statusGame.append(
         [Snake, Score2, food, frame_iteration, direction, old_record])
Exemplo n.º 3
0
 def visualise_game(self):
     while True:
         game = Snake(is_gui=True)
         _, score, snake, food = game.start()
         prev_observation = self.generate_observation(snake, food)
         for _ in range(self.goal_steps):
             done, score, snake, food, action, predictions = self._play(
                 game, snake, prev_observation)
             if done:
                 break
             else:
                 prev_observation = self.generate_observation(snake, food)
Exemplo n.º 4
0
def train():
    # plot_scores = []
    # plot_mean_scores = []
    # total_score = 0
    record = 0
    old_record = 0
    num_snake = 3
    agents = []
    snakes = []
    global game

    Threads_training_snake = []
    for i in range(num_snake):
        snake = Snake()
        snakes.append(snake)
    game = SnakeGameAI(num_snake=num_snake, Snake=snakes)
    for i in range(num_snake):
        agent = Agent()
        agents.append(agent)
        thread = threading.Thread(target=trainEachSnake, args=(
            agent,
            i,
        ))
        thread.start()

        Threads_training_snake.append(thread)
Exemplo n.º 5
0
 def initial_population(self):
     training_data = []
     for i in range(self.init_games):
         print("Training Game:", i + 1)
         game = Snake()
         _, prev_score, snake, food = game.start()
         prev_observation = self.generate_observation(snake, food)
         prev_food_distance = self.get_food_distance(snake, food)
         for _ in range(self.goal_steps):
             action, game_action = self.generate_action(snake)
             done, score, snake, food = game.move(game_action)
             if done:
                 training_data.append([
                     self.add_action_to_observation(prev_observation,
                                                    action), -1
                 ])
                 # with open("training.txt", "a") as file:
                 #     file.write('Game' + str(i + 1) + '\t' + "  ----------  " + str(training_data[-1]) + "\n")
                 break
             else:
                 food_distance = self.get_food_distance(snake, food)
                 if score > prev_score or food_distance < prev_food_distance:
                     training_data.append([
                         self.add_action_to_observation(
                             prev_observation, action), 1
                     ])
                 else:
                     training_data.append([
                         self.add_action_to_observation(
                             prev_observation, action), 0
                     ])
                 prev_observation = self.generate_observation(snake, food)
                 prev_food_distance = food_distance
             # with open("training.txt", "a") as file:
             #     file.write('Game' + str(i+1)+'\t' + "  ----------  " + str(training_data[-1]) + "\n")
     return training_data
Exemplo n.º 6
0
def test_snake_move():
    snake = Snake(3, 3, Position(1, 1), Direction.RIGHT)
    snake.move(None)
    assert snake.head.current_position.x == 2
    assert snake.head.current_position.y == 1
    assert snake.direction == Direction.RIGHT

    snake.move(Direction.UP)
    assert snake.head.current_position.x == 2
    assert snake.head.current_position.y == 0
    assert snake.direction == Direction.UP
Exemplo n.º 7
0
def test_snake_calc_next_head_postion():
    snake = Snake(3, 3, Position(1, 1), Direction.RIGHT)

    position = snake._calc_next_head_position(Direction.RIGHT)
    assert position.x == 2
    assert position.y == 1

    position = snake._calc_next_head_position(Direction.LEFT)
    assert position.x == 0
    assert position.y == 1

    position = snake._calc_next_head_position(Direction.UP)
    assert position.x == 1
    assert position.y == 0

    position = snake._calc_next_head_position(Direction.DOWN)
    assert position.x == 1
    assert position.y == 2
import cv2
import matplotlib
import matplotlib.pyplot as plt
import torch
from itertools import count
import time

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

checkpoint = torch.load('policy_net_with_tail.pth')

policy_net = convnet(config.BOARD_SIZE).float().to(device, non_blocking=True)
policy_net.load_state_dict(checkpoint['model_state_dict'])
policy_net.eval()

env = Snake(config.BOARD_SIZE)

while 1:
    done = False
    obs = env.reset()
    cum_reward = 0
    render = True
    env.render()
    for step in count(1):
        action = select_action(obs, policy_net, 0, explore=False)
        new_obs, reward, done = env.step(action)
        cum_reward += reward
        obs = new_obs

        env.render()
Exemplo n.º 9
0
    def train(self, n, m, pars):
        """
        (Game, int, int, dict()) -> None
        train game and run each step as
        sequence of frames
        n: row tiles of the screen
        m: col tiles of the screen
        pars" parameters passed in for each processors
        """
        # initialize
        record = 0
        game = Snake(n, m, pars.get('n_food', None))
        agent = Agent(game, pars)

        while True:
            # get old state
            state_old = game.get_state()

            # get move
            final_move = agent.get_action(state_old)

            # perform move and get new state
            reward, done, score = game.play_step(final_move, pars)
            state_new = game.get_state()

            # train short memory
            agent.train_short_memory(state_old, final_move, reward, state_new,
                                     done)

            # remember
            agent.remember(state_old, final_move, reward, state_new, done)

            # end game if reached num_games from pars or DEFAULT_END_GAME_POINT
            # if set to -1 then run for ever
            if pars.get('num_games', DEFAULT_END_GAME_POINT) != -1:
                if agent.n_games > pars.get('num_games',
                                            DEFAULT_END_GAME_POINT):
                    quit()
                    break

            # when game is over
            if done:
                # reset game attributes
                # increase game generation
                # train the long memory
                game.reset()
                agent.n_games += 1
                agent.train_long_memory()

                # new highscore
                if score > record:
                    record = score
                    # save the best model_state
                    #agent.model.save()

                # takes away food depending on given probability, up until 1 food remains
                decrease_probability = pars.get('decrease_food_chance',
                                                DECREASE_FOOD_CHANCE)
                if (game.n_food > 1) and (random.random() <
                                          decrease_probability):
                    game.n_food -= 1

                # prints game information to console
                print('Game', agent.n_games, 'Score', score, 'Record:', record)

                # appends game information to txt filen at specified path
                self.save_to_file(f"graphs/{pars.get('graph', 'test')}.txt",
                                  agent.n_games, score, record)
Exemplo n.º 10
0
def run_game(agent, game_number):
    # создать яблоко в позиции (20, 10)
    apple = Apple(
        Cell(WINDOW_WIDTH / WIDTH * round(WIDTH / 3),
             WINDOW_HEIGHT / HEIGHT * round(HEIGHT / 2), DISPLAY))
    # создать змейку. Пусть она состоит из трех ячеек
    #  в строке 10 и столбцах 3, 4, 5.
    #  Какой тип данных удобен для представления змейки?
    snake = Snake(
        Cell(WINDOW_WIDTH / WIDTH * 4,
             WINDOW_HEIGHT / HEIGHT * round(HEIGHT / 4), DISPLAY),
        Cell(WINDOW_WIDTH / WIDTH * 3,
             WINDOW_HEIGHT / HEIGHT * round(HEIGHT / 4), DISPLAY),
        Cell(WINDOW_WIDTH / WIDTH * 2,
             WINDOW_HEIGHT / HEIGHT * round(HEIGHT / 4), DISPLAY))

    # Reset player score.
    SCORE.player_score = 0

    # Initialize list containing tuples: (action, current state).
    action_state_list = []
    action_counter = 0

    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            terminate()
        # обработайте событие pygame.KEYDOWN
        #  и при необходимости измените направление движения змейки.
        if event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE:
            # ESC key pressed
            pygame.quit()
            sys.exit()
        if event.type == pygame.KEYDOWN:
            snake.direction = get_direction(
                event.key, snake.direction)  # Other key pressed
            # If any direction key was pressed - assign corresponding action.
            action = snake.direction

    steps = 0  # steps since the last positive reward
    while (not any(
        (snake_hit_self(snake), snake_hit_edge(snake)))) and (steps < 100):
        # Before snake does its first move, assign action = 'None'.
        action_counter += 1
        action = 'none'
        # Previous snake direction. We'll use as one of the current state parameters for evaluation.
        snake_prev_direction = snake.direction

        if not params['train']:
            agent.epsilon = 0.01
        else:
            # agent.epsilon is set to give randomness to actions
            agent.epsilon = 1 - (game_number * params['epsilon_decay_linear'])

        # get previous environment state.
        state_old = get_state(
            get_state_in_json(player_score=SCORE.player_score,
                              high_score=SCORE.high_score,
                              head_pos=get_snake_new_head(snake),
                              snake_pos=snake.body,
                              apple_pos=apple.apple,
                              prev_direction=snake_prev_direction))
        head_apple_distance_old_x, head_apple_distance_old_y = abs(get_snake_new_head(snake)[0] - apple.apple.x),\
                                                               abs(get_snake_new_head(snake)[1] - apple.apple.y)

        # perform random actions based on agent.epsilon, or choose the action
        if random.uniform(0, 1) < agent.epsilon:
            snake.turn(matrix=np.eye(3)[random.randint(0, 2)],
                       prev_direction=snake_prev_direction,
                       move_list=SNAKE_MOVE)
        else:
            # predict action based on the old state
            with torch.no_grad():
                state_old_tensor = torch.tensor(state_old.reshape((1, 12)),
                                                dtype=torch.float32).to(DEVICE)
                prediction = agent(state_old_tensor)
                snake.turn(matrix=np.eye(3)[np.argmax(
                    prediction.detach().cpu().numpy()[0])],
                           prev_direction=snake_prev_direction,
                           move_list=SNAKE_MOVE)

        # сдвинуть змейку в заданном направлении
        snake.move()

        # обработайте ситуацию столкновения змейки с яблоком.
        #  В этом случае нужно:
        #  * Увеличить размер змейки
        #  * Создать новое яблоко.
        if snake_hit_apple(snake, apple):
            snake.grow()
            apple.spawn([(block.x, block.y) for block in snake.body
                         ])  # check apple does not spawn on snake.
            SCORE.score()

        # Calculate new environment state after snake moved.
        state_new = get_state(
            get_state_in_json(player_score=SCORE.player_score,
                              high_score=SCORE.high_score,
                              head_pos=get_snake_new_head(snake),
                              snake_pos=snake.body,
                              apple_pos=apple.apple,
                              prev_direction=snake_prev_direction))
        head_apple_distance_new_x, head_apple_distance_new_y = abs(get_snake_new_head(snake)[0] - apple.apple.x),\
                                                               abs(get_snake_new_head(snake)[1] - apple.apple.y)

        # Set reward for the new state.
        reward = agent.set_reward(snake, apple, head_apple_distance_new_x,
                                  head_apple_distance_old_x,
                                  head_apple_distance_new_y,
                                  head_apple_distance_old_y)

        # If snake hit apple or moved towards it, reset steps counter to 0.
        if reward > 0:
            steps = 0

        if params['train']:
            # train short memory base on the new action and state
            agent.train_short_memory(
                state_old, snake.turn_direction, reward, state_new,
                any((snake_hit_self(snake), snake_hit_edge(snake))))
            # store the new data into a long term memory
            agent.remember(state_old, snake.turn_direction, reward, state_new,
                           any((snake_hit_self(snake), snake_hit_edge(snake))))

        # передать яблоко в функцию отрисовки кадра
        # передать змейку в функцию отрисовки кадра
        if params['display']:
            draw_frame(snake, apple, SCORE)
        FPS_CLOCK.tick(FPS)

        steps += 1

        # Appending the current action (could be 'none') and the current state of the snake to
        # the list - "Action-State List".
        action_state_list.append(
            ({
                f"Action {action_counter}": action
            },
             get_state_in_json(player_score=SCORE.player_score,
                               high_score=SCORE.high_score,
                               head_pos=get_snake_new_head(snake),
                               snake_pos=snake.body,
                               apple_pos=apple.apple,
                               prev_direction=snake_prev_direction)))
        # "Action-State List" to current game and write json on disk.
        STATE[f"Game #{game_number}"] = action_state_list

    # если змейка достигла границы окна, завершить игру.
    #  Для проверки воспользуйтесь функцией snake_hit_edge.
    if snake_hit_edge(snake):
        write_state_to_file(STATE, CURRENT_TIME)

    # если змейка задела свой хвост, завершить игру.
    #  Для проверки восппользуйтесь функцией snake_hit_self.
    if snake_hit_self(snake):
        write_state_to_file(STATE, CURRENT_TIME)
Exemplo n.º 11
0
            child_nns[i] = Snake_nn(NET_LAYERS, weights)
    speed = 0
    pygame.init()
    pygame.font.init()
    font = pygame.font.SysFont('Comic Sans MS', 20)
    for generation in range(NUM_GENERATIONS):
        start_time = pytime.time()
        screen = pygame.display.set_mode((SCREEN_SIZE, SCREEN_SIZE+30))
        screen.fill(BG_COLOR)
        manager = pygame_gui.UIManager((SCREEN_SIZE, SCREEN_SIZE+30))
        rect = pygame.Rect((0, SCREEN_SIZE+10), (SCREEN_SIZE, SCREEN_SIZE+15))
        slider = pygame_gui.elements.ui_horizontal_slider.UIHorizontalSlider(rect, speed, [0, 200], manager)
        clock = pygame.time.Clock()
        population_list = {}
        for i in range(POPULATION):
            snake = Snake(SCREEN_SIZE_CELLS//2*CELL_SIZE, SCREEN_SIZE_CELLS//2*CELL_SIZE, SNAKE_COLOR, screen)
            food_x = random.choice(range(0, SCREEN_SIZE - CELL_SIZE, CELL_SIZE))
            food_y = random.choice(range(0, SCREEN_SIZE - CELL_SIZE, CELL_SIZE))
            food = Food(food_x, food_y, FOOD_COLOR, screen)
            population_list[i] = [snake, food]

        
        if not child_nns:
            nn_list = {}
            for i in range(POPULATION):
                nn_list[i] = Snake_nn(NET_LAYERS, None)
        else:
            nn_list = child_nns
       
        scores = {}
        for i in nn_list.keys():
Exemplo n.º 12
0
from turtle import Screen
from game import Snake
from food import Food
from scoreboard import Scoreboard
import time

screen = Screen()
screen.setup(width=600, height=600)
screen.bgcolor("black")
screen.title("My Snake Game")
screen.tracer(0)

snake = Snake()
food = Food()
scoreboard = Scoreboard()

screen.listen()
screen.onkey(snake.up, "Up")
screen.onkey(snake.down, "Down")
screen.onkey(snake.left, "Left")
screen.onkey(snake.right, "Right")


def run():
    game_is_on = True
    while game_is_on:
        screen.update()
        time.sleep(0.1)
        snake.move()

        # Detect collision with food.
Exemplo n.º 13
0
def move():
    json = request.get_json()
    snake = Snake.from_json(json['you'])
    board = Board.from_json(json['board'])
    return play.move(snake, board, None)