def test_minimax(self):

        p1 = game_agent.MinimaxPlayer()
        p1.search_depth = 1

        p2 = game_agent.MinimaxPlayer()
        p2.search_depth = 1

        # Create a smaller board for testing
        self.game = isolation.Board(p1, p2, 9, 9)

        self.game._board_state = [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
            0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
            0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 41, 21
        ]

        logging.info(self.game.to_string())

        # players take turns moving on the board, so player1 should be next to move
        assert (p1 == self.game.active_player)

        winner, history, outcome = self.game.play()
        logging.info("\nWinner: {}\nOutcome: {}".format(winner, outcome))
        logging.info(self.game.to_string())
        logging.info("Move history:\n{!s}".format(history))

        # Check the first selected move
        expectedResults = [[2, 4]]
        self.assertIn(history[0], expectedResults)
Exemplo n.º 2
0
    def test_get_moves1(self):
        d = 9
        self.player1 = game_agent.MinimaxPlayer(search_depth=2)
        self.player2 = game_agent.MinimaxPlayer(search_depth=2)

        self.game = isolation.Board(self.player1,
                                    self.player2,
                                    width=d,
                                    height=d)

        self.game._board_state = [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,
            0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 51, 42
        ]
        self.game.move_count = len(
            [x for x in self.game._board_state[0:-4] if x == 1])
        print(self.game.to_string())

        moves = game_agent.get_moves(self.game, [(6, 5)])
        print(len(moves))
        print(moves)
        self.assertEqual(len(moves), 6)

        moves = game_agent.get_moves(self.game, moves)
        print(len(moves))
        print(moves)
        self.assertEqual(len(moves), 13)
Exemplo n.º 3
0
class MinimaxTest(unittest.TestCase):
    """Unit tests for MinimaxTests"""

    reload(game_agent)
    player1 = game_agent.MinimaxPlayer()
    player1.time_left = tl
    player2 = game_agent.MinimaxPlayer()

    # setup a board with no moves to make sure returns correctly
    def trivial_setup(self):
        game = isolation.Board(self.player1, self.player2, 2, 2)
        game.apply_move((0, 1))
        game.apply_move((1, 0))
        return game

    def setUp(self, pos1=(0, 1), pos2=(1, 0)):
        game = isolation.Board(self.player1, self.player2)
        game.apply_move(pos1)
        game.apply_move(pos2)
        return game

    # Test that minimax returns when no moves left
    def testTrivial(self):
        game = self.trivial_setup()
        ret = self.player1.minimax(game, 3)
        self.assertTrue(ret == (-1, -1), ret)

    def testMiniMax(self):
        game = self.setUp()
        ret = self.player1.minimax(game, 3)
Exemplo n.º 4
0
    def test_minimax(self):
        player1 = game_agent.MinimaxPlayer(name='Player 1')
        player2 = game_agent.MinimaxPlayer(name='Player 2')
        #player2 = sample_players.GreedyPlayer()
        game = isolation.Board(player1, player2)

        # place player 1 on the board at row 2, column 3, then place player 2 on
        # the board at row 0, column 5; display the resulting board state.  Note
        # that the .apply_move() method changes the calling object in-place.
        game.apply_move((2, 3))
        game.apply_move((0, 5))

        # players take turns moving on the board, so player1 should be next to move
        assert (player1 == game.active_player)
        '''
        # get a list of the legal moves available to the active player
        print(game.get_legal_moves())

        # get a successor of the current state by making a copy of the board and
        # applying a move. Notice that this does NOT change the calling object
        # (unlike .apply_move()).
        new_game = game.forecast_move((1, 1))
        assert(new_game.to_string() != game.to_string())
        print("\nOld state:\n{}".format(game.to_string()))
        print("\nNew state:\n{}".format(new_game.to_string()))
        '''

        # play the remainder of the game automatically -- outcome can be "illegal
        # move", "timeout", or "forfeit"
        winner, history, outcome = game.play()
        print("\nWinner: {}\nOutcome: {}".format(winner, outcome))
        print(game.to_string())
        print("Move history:\n{!s}".format(history))
Exemplo n.º 5
0
    def setUp(self):
        reload(game_agent)
        self.player1 = Agent(
            game_agent.MinimaxPlayer(score_fn=open_move_score), "MM_Open")
        self.player2 = Agent(game_agent.MinimaxPlayer(score_fn=improved_score),
                             "MM_Improved")
        self.game = isolation.Board(self.player1, self.player2)

        self.game.play()
Exemplo n.º 6
0
 def setUp(self):
     reload(game_agent)
     self.player1 = game_agent.MinimaxPlayer()
     self.player2 = sample_players.GreedyPlayer()
     self.player3 = sample_players.RandomPlayer()
     self.player4 = game_agent.AlphaBetaPlayer()
     self.player5 = game_agent.AlphaBetaPlayer()
     self.player6 = game_agent.MinimaxPlayer()
     self.game = None
Exemplo n.º 7
0
 def test_empty(self):
     reload(game_agent)
     self.player1 = game_agent.MinimaxPlayer()
     self.player2 = game_agent.MinimaxPlayer()
     game = isolation.Board(self.player1, self.player2)
     self.assertEqual(game.get_player_location(self.player1), None)
     self.assertEqual(game.get_player_location(self.player2), None)
     game.play(time_limit=100)
     self.assertNotEqual(game.get_player_location(self.player1), None)
     self.assertNotEqual(game.get_player_location(self.player2), None)
Exemplo n.º 8
0
 def setUp(self):
     reload(game_agent)
     self.player1 = game_agent.MinimaxPlayer(name="Player 1",
                                             search_depth=1)
     self.player2 = game_agent.MinimaxPlayer(name="Player 2",
                                             search_depth=1)
     self.game = isolation.Board(self.player1,
                                 self.player2,
                                 width=9,
                                 height=9)
     self.game.set_board_state(self.ud_submit_board_state)
Exemplo n.º 9
0
    def _test_minimax(self):
        print("---------- testing min max player ----------")
        self.player1 = game_agent.MinimaxPlayer()
        self.player2 = game_agent.MinimaxPlayer()

        for i in range(75):
            move = self.game.active_player.get_move(self.game,
                                                    time_left=lambda: 100000)
            print(move)
            self.game.apply_move(move)
            print(self.game.print_board())
Exemplo n.º 10
0
    def test1(self):
        player1 = game_agent.MinimaxPlayer()
        player2 = game_agent.MinimaxPlayer()

        game = isolation.Board(player1, player2)

        game.apply_move((2, 3))
        game.apply_move((0, 5))

        assert (player1 == game.active_player)

        winner, history, outcome = game.play()
Exemplo n.º 11
0
    def setUp(self):
        reload(game_agent)

        self.minimax_player1 = game_agent.MinimaxPlayer()
        self.minimax_player2 = game_agent.MinimaxPlayer()
        self.minimax_game = isolation.Board(self.minimax_player1,
                                            self.minimax_player2)

        self.alphabeta_player1 = game_agent.AlphaBetaPlayer()
        self.alphabeta_player2 = game_agent.AlphaBetaPlayer()
        self.alphabeta_game = isolation.Board(self.alphabeta_player1,
                                              self.alphabeta_player2)
Exemplo n.º 12
0
    def get_next_move(self, board_size, depth, visited_moves):
        player1 = game_agent.MinimaxPlayer(depth)
        player2 = game_agent.MinimaxPlayer(depth)
        self.game = isolation.Board(player1, player2, board_size, board_size)

        for move in visited_moves:
            print('Applying move {}'.format(move))
            self.game.apply_move(move)
        print(self.game.print_board())
        next_move = player1.get_move(self.game, lambda: 150)
        self.game.apply_move(next_move)
        print(self.game.print_board())
        return next_move
Exemplo n.º 13
0
 def reset_boards(self):
     self.my_player = game_agent.MinimaxPlayer(3,game_agent.custom_score,10)
     self.opponent = sample_players.GreedyPlayer(sample_players.open_move_score)
     self.game_board_1 = TestBoard(self.my_player, self.opponent)
     self.game_board_2 = TestBoard(self.opponent,self.my_player)
     self.my_player = game_agent.MinimaxPlayer(5,game_agent.custom_score,10)
     self.game_board_3 = TestBoard(self.my_player, self.opponent)
     self.my_player = game_agent.MinimaxPlayer(10,game_agent.custom_score,10)
     self.game_board_4 = TestBoard(self.my_player, self.opponent)
     self.my_player = game_agent.MinimaxPlayer(3,game_agent.custom_score_2,10)
     self.game_board_5 = TestBoard(self.my_player, self.opponent)
     self.my_player = game_agent.MinimaxPlayer(3,game_agent.custom_score_3,10)
     self.game_board_6 = TestBoard(self.my_player, self.opponent)
Exemplo n.º 14
0
 def testSecondPlayerShouldWinIn2x3(self):
     player1 = ga.MinimaxPlayer(search_depth=1, score_fn=sp.open_move_score)
     player2 = ga.MinimaxPlayer(search_depth=1, score_fn=sp.open_move_score)
     game = isolation.Board(player1, player2, 2, 3)
     winner, moves, _ = game.play(100)
     self.assertEqual(winner, player2, "player2 should have won the match")
     self.assertEqual(len(moves), 2, "there should have been two moves, due to the clear win")
     self.assertEqual(moves[0], [2, 1],
                      "player1 should have picked the top left corner since \
                      it's the first node in the tree")
     self.assertEqual(moves[1], [0, 0],
                      "player2 should have picked the opposite corner since \
                      it's the first node that has a direct win")
Exemplo n.º 15
0
    def test_get_long_path_potential_score(self):
        d = 9
        self.player1 = game_agent.MinimaxPlayer(search_depth=2)
        self.player2 = game_agent.MinimaxPlayer(search_depth=2)

        self.game = isolation.Board(self.player1,
                                    self.player2,
                                    width=d,
                                    height=d)

        self.game._board_state = [
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,
            0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 51, 42
        ]
        self.game.move_count = len(
            [x for x in self.game._board_state[0:-4] if x == 1])
        print(self.game.to_string())

        start = time.time()
        score = game_agent.custom_score_2(self.game, self.player1)
        elapsed = time.time() - start
        print('generations_weighted_difference {}'.format(score))
        print('elapsed {}'.format(elapsed))

        start = time.time()
        score = game_agent.custom_score_3(self.game, self.player1)
        elapsed = time.time() - start
        print('get_long_path_potential_score {}'.format(score))
        print('elapsed {}'.format(elapsed))

        moves = game_agent.get_moves(
            self.game, [self.game.get_player_location(self.player1)])
        start = time.time()
        max, avg = game_agent.max_avg_path(self.game, moves)
        elapsed = time.time() - start
        print('max_avg_path {} {}'.format(max, avg))
        print('elapsed {}'.format(elapsed))

        start = time.time()
        max_pos = 100
        max = game_agent.dfs(self.game,
                             self.game.get_player_location(self.player1),
                             max_pos)
        elapsed = time.time() - start
        print('dfs {} max positions {}'.format(max, max_pos))
        print('elapsed {}'.format(elapsed))
Exemplo n.º 16
0
    def test_minimax_interface(self):
        """Test CustomPlayer.minimax interface with simple input """
        h, w = 7, 7  # board size
        test_depth = 1
        starting_location = (5, 3)
        adversary_location = (0, 0)  # top left corner
        heuristic = lambda g, p: 0.  # return 0 everywhere

        # create a player agent & a game board
        agentUT = game_agent.MinimaxPlayer(test_depth, heuristic)
        agentUT.time_left = lambda: 99  # ignore timeout for fixed-depth search
        board = isolation.Board(agentUT, 'null_agent', w, h)

        # place two "players" on the board at arbitrary (but fixed) locations
        board.apply_move(starting_location)
        board.apply_move(adversary_location)

        for move in board.get_legal_moves():
            next_state = board.forecast_move(move)
            v, _ = agentUT.minimax_with_score(next_state, test_depth, True)

            self.assertTrue(
                type(v) == float,
                ("Minimax function should return a floating " +
                 "point value approximating the score for the " +
                 "branch being searched."))
Exemplo n.º 17
0
 def test_minimax(self):
     reload(game_agent)
     self.player1 = game_agent.MinimaxPlayer()
     self.player2 = sample_players.RandomPlayer()
     self.game = isolation.Board(self.player1, self.player2) 
     time_left = lambda : 10.
     print(self.player1.get_move(self.game, time_left))
Exemplo n.º 18
0
 def test_minimax_depth_5(self):
     player = game_agent.MinimaxPlayer()
     player.time_left = self.create_clock(1000)
     best_move = player.minimax(self.board, 5)
     self.assertTrue(
         best_move in [(2, 3), (3, 2), (2, 5), (3, 6), (5, 2), (5, 6),
                       (6, 3), (6, 5)], 'best move: ' + str(best_move))
Exemplo n.º 19
0
 def test_minimax(self):
     self.minimax_player = game_agent.MinimaxPlayer(
         score_fn=sample_players.center_score, timeout=float("inf"))
     self.greedy_player = sample_players.GreedyPlayer()
     self.game = isolation.Board(self.minimax_player, self.greedy_player)
     # self.game.play(time_limit=float("inf"))
     self.minimax_player.match_boards(self.game, self.game)
Exemplo n.º 20
0
 def test_minimax_get_move(self):
     # TODO: All methods must start with "test_"
     game = self.game
     player = game_agent.MinimaxPlayer()
     player.time_left = 10.
     print(player.minimax(game, 3))
     self.assertTrue(0 == 0)
Exemplo n.º 21
0
 def test_minimax_no_moves(self):
     self.player1 = game_agent.MinimaxPlayer(1, left_and_uppermost, 0)
     self.player2 = "Player 2"
     self.game = isolation.Board(self.player1, self.player2, 1, 1)
     self.game._board_state[0] = 'X'
     move = self.player1.get_move(self.game, always_time_left)
     self.assertEqual(move, (-1, -1))
Exemplo n.º 22
0
 def test_alpha_beta(self):
     minimax_player = game_agent.MinimaxPlayer(
         score_fn=sample_players.open_move_score)
     random_player = sample_players.RandomPlayer()
     game = isolation.Board(minimax_player, random_player)
     result = game.play(time_limit=TIME_LIMIT)
     pdb.set_trace()
Exemplo n.º 23
0
    def test_minimax(self):

        player1 = game_agent.MinimaxPlayer()
        player2 = game_agent.AlphaBetaPlayer()
        the_board = isolation.Board(player1, player2)
        assert (the_board.get_legal_moves()
                is not None), "Legal moves is not blank"
Exemplo n.º 24
0
    def test_minimax(self):
        #Set up board
        print("Setting up inital board for simple minimax player test....")
        self.setUp()

        #Put some moves on board to create different start states

        # Player 1 move 1
        self.game.active_player == self.player1
        self.game.apply_move((0, 0))
        # Player 2 move 1
        self.game.active_player == self.player2
        self.game.apply_move((0, 2))
        ##        # Player 1 move 2
        ##        self.game.active_player==self.player1
        ##        self.game.apply_move((2,1))
        ##        # Player 2 move 2
        ##        self.game.active_player==self.player2
        ##        self.game.apply_move((2,0))

        #Print inital board
        print("\nInital state:\n{}".format(self.game.to_string()))

        #Calculate player 1 best next move using MiniMax
        best_move = (-1, -1)
        MinimaxPlayer = game_agent.MinimaxPlayer()
        best_move = MinimaxPlayer.get_move(self.game, self.timeLimit)
        print('Best move for Player 1 is', best_move)
Exemplo n.º 25
0
    def xtest_minimax(self):
        self.setUp(5, 5)
        game = self.game
        minimaxPlayer = game_agent.MinimaxPlayer(1, game_agent.custom_score)

        #self.game.apply_move((0,2))
        #self.game.apply_move((0,4))

        print('##################################################')
        print(game.to_string())
        print('##################################################')

        for i in range(25):

            moves = game.get_legal_moves()
            if len(moves) == 0:
                break

            self.print_moves(moves)
            print('active player', game.active_player)
            print('minimax number of legal moves', len(moves))

            move = minimaxPlayer.get_move(game, self.timeLeft)
            self.print_move(move)
            game.apply_move((move))

            print('##################################################')
            print(game.to_string())
            print('##################################################', i)

        if game.is_loser(game.active_player):
            print(game.active_player, "has lost the game")
            print(game.inactive_player, "has won the game")
Exemplo n.º 26
0
    def test_single_min_max(self):
        width, height = 7, 7
        #timeout = float("-inf")
        timeout = 10.

        self.player1 = game_agent.MinimaxPlayer(
            search_depth=3, score_fn=game_agent.custom_score, timeout=timeout)

        self.player2 = sample_players.GreedyPlayer(
            score_fn=game_agent.custom_score_3)

        self.game = isolation.Board(self.player1,
                                    self.player2,
                                    width=width,
                                    height=height)

        #self.game.apply_move((random.randint(0, self.game.width-1), random.randint(0, self.game.height-1)))
        #self.game.apply_move((random.randint(0, self.game.width-1), random.randint(0, self.game.height-1)))
        print(self.game.to_string())

        # players take turns moving on the board, so player1 should be next to move
        assert (self.player1 == self.game.active_player)

        # get a list of the legal moves available to the active player
        print(self.game.get_legal_moves())

        # play the remainder of the game automatically -- outcome can be "illegal
        # move", "timeout", or "forfeit"
        winner, history, outcome = self.game.play()
        print("\nWinner: {}\nOutcome: {}".format(
            "player 1" if winner == self.player1 else "player 2", outcome))
        print("\nstate:\n{}".format(self.game.to_string()))
        print("\nhistory:\n{}".format(history))
Exemplo n.º 27
0
 def setUp(self):
     reload(game_agent)
     self.player1 = game_agent.MinimaxPlayer(2,
                                             sample_players.improved_score)
     self.player2 = sample_players.GreedyPlayer()
     self.game = isolation.Board(self.player1, self.player2, 9, 9)
     self.time_left = lambda: float("inf")
Exemplo n.º 28
0
 def test_minimax_init(self):
     self.setUp_random_vs_minimax()
     player = game_agent.MinimaxPlayer(search_depth=10, timeout=5.)
     self.assertTrue(player.search_depth == 10)
     self.assertTrue(player.TIMER_THRESHOLD == 5.)
     self.assertTrue(player.score == game_agent.min_value)
     pass
Exemplo n.º 29
0
 def setUp(self):
     reload(game_agent)
     self.player1 = game_agent.MinimaxPlayer()
     self.player2 = sample_players.GreedyPlayer(
         sample_players.improved_score)
     self.player3 = game_agent.AlphaBetaPlayer()
     # self.game = isolation.Board(self.player1, self.player2,7,7)
     self.game = isolation.Board(self.player3, self.player2, 7, 7)
Exemplo n.º 30
0
    def test_minimax_scores_expected_number_of_nodes(self):
        self.player1 = game_agent.MinimaxPlayer(score_fn=open_move_score, search_depth=2)
        self.game = isolation.Board(self.player1, self.player2, width=9, height=9)
        self.game._board_state = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48, 32]

        with mock.patch.object(self.player1, 'score', wraps=self.player1.score) as score_fn:
            self.player1.get_move(self.game, lambda : 15.)
            self.assertEqual(score_fn.call_count, 35)