Exemplo n.º 1
0
 def test_two_sim_guess_it(self):
     gi = TwoPlayerGuessIt()
     p = UninformedMCTSPlayer(gi, 2)
     init = gi.get_initial_state()
     s = p.update_state(init)
     s_gt = init
     s_gt[0, 0, 0] = 1
     s_gt[:, :, -1] = 1
     self.assertTrue((s == s_gt).all())
Exemplo n.º 2
0
 def test_two_sim_guess_it(self):
     gi = TwoPlayerGuessIt()
     pr = NeuralNetwork(gi, PriorNet)
     p = DeepMCTSPlayer(gi, pr, 2)
     init = gi.get_initial_state()
     s = p.update_state(init)
     s_gt = init
     s_gt[0, 1, 0] = 1
     s_gt[:, :, -1] = 1
     self.assertTrue((s == s_gt).all())
Exemplo n.º 3
0
 def test_six_sim_guess_it(self):
     for _ in range(1000):  # There should be no stochasticity (temp=0)
         gi = TwoPlayerGuessIt()
         p = UninformedMCTSPlayer(gi, 6)
         init = gi.get_initial_state()
         s = p.update_state(init)
         s_gt = init
         s_gt[-1, -1, 0] = 1
         s_gt[:, :, -1] = 1
         self.assertTrue((s == s_gt).all())
Exemplo n.º 4
0
 def test_three_sim_guess_it(self):
     for _ in range(100):  # There should be no stochasticity (temp=0)
         gi = TwoPlayerGuessIt()
         pr = NeuralNetwork(gi, PriorNet)
         p = DeepMCTSPlayer(gi, pr, 3)
         init = gi.get_initial_state()
         s = p.update_state(init)
         s_gt = init.copy()
         s_gt[0, 1, 0] = 1
         s_gt[:, :, -1] = 1
         self.assertTrue((s == s_gt).all())
Exemplo n.º 5
0
 def test_reset_guess_it(self):
     gi = TwoPlayerGuessIt()
     p = UninformedMCTSPlayer(gi, 2)
     init = gi.get_initial_state()
     s = p.update_state(init)
     s_gt = init.copy()
     s_gt[0, 0, 0] = 1
     s_gt[:, :, -1] = 1
     self.assertTrue((s == s_gt).all())
     for _ in range(100):
         p.reset()
         s = p.update_state(init)
     self.assertTrue((s == s_gt).all())
Exemplo n.º 6
0
 def test_reset_guess_it(self):
     gi = TwoPlayerGuessIt()
     pr = NeuralNetwork(gi, PriorNet)
     p = DeepMCTSPlayer(gi, pr, 2)
     init = gi.get_initial_state()
     s = p.update_state(init)
     s_gt = init.copy()
     s_gt[0, 1, 0] = 1
     s_gt[:, :, -1] = 1
     self.assertTrue((s == s_gt).all())
     for _ in range(100):
         p.reset()
         s = p.update_state(init)
     self.assertTrue((s == s_gt).all())
Exemplo n.º 7
0
    def test_dumbnet_predict(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, DumbNet)
        init = gi.get_initial_state()
        p, v = nn.predict(init)
        self.assertEqual(len(p), 4)
        self.assertTrue((p == .25).all())
        self.assertEqual(v, 0.0)

        template = np.zeros_like(gi.get_available_actions(init))
        template[0, 1] = 1
        s = gi.take_action(init, template)
        p, v = nn.predict(s)
        self.assertEqual(len(p), 3)
        self.assertTrue((p == 0.3333333).all())
        self.assertEqual(v, 0.0)
Exemplo n.º 8
0
    def test_uniform_get_valid_dist(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, DumbNet)
        init = gi.get_initial_state()
        logits = torch.ones((2, 2))
        self.assertEqual(list(nn.get_valid_dist(init, logits)),
                         [.25, .25, .25, .25])
        self.assertEqual(
            list(nn.get_valid_dist(init, logits, log_softmax=True)),
            [-1.38629436] * 4)

        template = np.zeros_like(gi.get_available_actions(init))
        template[0, 1] = 1
        s = gi.take_action(init, template)
        self.assertEqual(list(nn.get_valid_dist(s, logits)), [0.3333333] * 3)
        self.assertEqual(list(nn.get_valid_dist(s, logits, log_softmax=True)),
                         [-1.09861228] * 3)
Exemplo n.º 9
0
    def test_easy_loss(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, DumbNet)
        states = np.array([gi.get_initial_state()])

        p_gt = np.ones(4) * .1
        p_gt[-1] = .7
        p_gt = np.array([p_gt])
        p_pred = np.ones((1, 2, 2), dtype=np.float32)
        p_pred[0, 1, 1] = 2
        p_pred = torch.from_numpy(p_pred)
        v_gt, v_pred = torch.Tensor([1.]), torch.Tensor([-.35])
        l = nn.loss(states, (p_pred, v_pred), (p_gt, v_gt))
        val = l.detach().numpy().reshape(-1)[0]

        mse_loss = 1.8225
        ce_loss = 1.0437
        self.assertAlmostEqual(mse_loss + ce_loss, val, places=4)
Exemplo n.º 10
0
    def test_prior_get_valid_dist(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, DumbNet)
        init = gi.get_initial_state()
        logits = torch.ones((2, 2))
        logits[:, -1] = 2
        dist = [float(x) for x in list(nn.get_valid_dist(init, logits))]
        self.assertEqual(dist, [
            0.13447073101997375, 0.3655293583869934, 0.13447073101997375,
            0.3655293583869934
        ])

        template = np.zeros_like(gi.get_available_actions(init))
        template[0, 1] = 1
        s = gi.take_action(init, template)
        dist = [float(x) for x in list(nn.get_valid_dist(s, logits))]
        self.assertEqual(
            dist,
            [0.21194154024124146, 0.21194154024124146, 0.5761168599128723])
Exemplo n.º 11
0
    def test_tie_train(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, MLP, weight_decay=0, lr=1e-4)

        data = []
        s1 = gi.get_initial_state()
        data.append([s1, np.array([.3, .2, .1, .4]), .8])
        data.append([s1, np.array([.4, .3, .2, .1]), .0])
        # Should become [.35, .25, .15, .25], .4
        data = np.array(data)

        for _ in range(600):
            nn.train(data)
        p, v = nn.predict(s1)
        np.testing.assert_allclose(p,
                                   np.array([.35, .25, .15, .25],
                                            dtype=np.float32),
                                   atol=0.01)
        np.testing.assert_allclose(v, .4, atol=.03)
Exemplo n.º 12
0
    def test_dumbnet_guessit_self_play(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, DumbNet)

        t = Trainer(gi, nn, num_simulations=2, num_games=1, num_updates=0, buffer_size_limit=None, cpuct=1, num_threads=1)
        data = t.self_play(temperature=0)

        np.testing.assert_equal(data[:,-1], np.array([-1, 1, -1, 1]))
        s = gi.get_initial_state()
        np.testing.assert_equal(data[0,0], s)
        np.testing.assert_equal(data[0,1], np.array([1, 0, 0, 0]))
        s = gi.take_action(s, np.array([[1,0],[0,0]]))
        np.testing.assert_equal(data[1,0], s)
        np.testing.assert_equal(data[1,1], np.array([1, 0, 0]))
        s = gi.take_action(s, np.array([[0,1],[0,0]]))
        np.testing.assert_equal(data[2,0], s)
        np.testing.assert_equal(data[2,1], np.array([1, 0]))
        s = gi.take_action(s, np.array([[0,0],[1,0]]))
        np.testing.assert_equal(data[3,0], s)
        np.testing.assert_equal(data[3,1], np.array([1]))
Exemplo n.º 13
0
    def test_easy_train(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, MLP, weight_decay=0, lr=1e-3)

        data = []
        s1 = gi.get_initial_state()
        s2 = gi.take_action(s1, np.array([[1, 0], [0, 0]]))
        s3 = gi.take_action(s2, np.array([[0, 1], [0, 0]]))
        data.append([s1, np.array([.1, .1, .1, .7]), .65])
        data.append([s2, np.array([.1, .1, .8]), .30])
        data.append([s3, np.array([.4, .6]), .1])
        data = np.array(data)

        for _ in range(350):
            nn.train(data)

        for row in data:
            s = row[0]
            p, v = nn.predict(s)
            np.testing.assert_allclose(p, row[1].astype(np.float32), atol=1e-5)
            np.testing.assert_allclose(v, row[2], atol=1e-5)
Exemplo n.º 14
0
    def test_combined_loss(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, DumbNet)
        init = gi.get_initial_state()
        template = np.zeros_like(gi.get_available_actions(init))
        template[0, 1] = 1
        s = gi.take_action(init, template)
        states = np.array([init, s])

        p_gt_top = np.ones(4) * .1
        p_gt_top[-1] = .7
        p_gt_bot = np.ones(3) * .2
        p_gt_bot[-1] = .6
        p_gt = np.array([p_gt_top, p_gt_bot], dtype=np.object)
        p_pred = np.ones((2, 2, 2), dtype=np.float32)
        p_pred[:, 1, 1] = 2
        p_pred = torch.from_numpy(p_pred)
        v_gt, v_pred = torch.Tensor([1., .5]), torch.Tensor([-.35, -.2])
        l = nn.loss(states, (p_pred, v_pred),
                    (p_gt, v_gt)).detach().numpy().reshape(-1)[0]

        self.assertAlmostEqual((.49 + .9514) + (1.8225 + 1.0437), l, places=4)
Exemplo n.º 15
0
    def test_masked_loss(self):
        gi = TwoPlayerGuessIt()
        nn = NeuralNetwork(gi, DumbNet)
        s = gi.get_initial_state()
        template = np.zeros_like(gi.get_available_actions(s))
        template[0, 1] = 1
        s = gi.take_action(s, template)
        states = np.array([s])

        p_gt = np.ones(3) * .2
        p_gt[-1] = .6
        p_gt = np.array([p_gt])
        p_pred = np.ones((1, 2, 2), dtype=np.float32)
        p_pred[0, 1, 1] = 2
        p_pred = torch.from_numpy(p_pred)
        v_gt, v_pred = torch.Tensor([.5]), torch.Tensor([-.2])
        l = nn.loss(states, (p_pred, v_pred),
                    (p_gt, v_gt)).detach().numpy().reshape(-1)[0]

        mse_loss = .49
        ce_loss = .9514
        self.assertAlmostEqual(mse_loss + ce_loss, l, places=4)