def run(self):
     log_dir = "./logs/bastille/Random_Vs_ReinforceClassic/" + str(time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(RandomAgent(),
                                      ReinforceClassicAgent(8, 12),
                                      checkpoint=100,
                                      log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/Random_Vs_DoubleQLearning/" + str(time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(RandomAgent(),
                                      DoubleQLearningAgent(),
                                      checkpoint=100,
                                      log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/DeepQLearning_Vs_TabularQLearning/" + str(
         time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(DeepQLearningAgent(8, 12),
                                      TabularQLearningAgent(),
                                      checkpoint=100,
                                      log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/TabularQLearning_ReinforceClassic/" + str(
         time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(TabularQLearningAgent(),
                                      ReinforceClassicAgent(8, 12),
                                      checkpoint=100,
                                      log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/ReinforceClassicWithMultipleTrajectories_Vs_TabularQLearningAgent/" + str(
         time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(
             ReinforceClassicWithMultipleTrajectoriesAgent(8, 12),
             TabularQLearningAgent(),
             checkpoint=100,
             log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/MOISMCTSWithRandomRollouts_Vs_TabularQLearning/" + str(
         time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(MOISMCTSWithRandomRolloutsAgent(
             100, SafeWindJammersRunner(RandomAgent(), RandomAgent())),
                                      TabularQLearningAgent(),
                                      checkpoint=100,
                                      log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/TabularQLearning_PPOWithMultipleTrajectoriesMultiOutputs" + str(
         time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(
             TabularQLearningAgent(),
             PPOWithMultipleTrajectoriesMultiOutputsAgent(8, 12),
             checkpoint=100,
             log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/TabularQLearning_MOISMCTSWithRandomRolloutsExpertThenApprentice/" + str(
         time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(
             TabularQLearningAgent(),
             MOISMCTSWithRandomRolloutsExpertThenApprenticeAgent(
                 100, SafeWindJammersRunner(RandomAgent(), RandomAgent()),
                 8, 12),
             checkpoint=100,
             log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/Random_Vs_RandomRollout_100/" + str(time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(RandomAgent(),
                                      RandomRolloutAgent(
                                          100,
                                          SafeWindJammersRunner(
                                              RandomAgent(),
                                              RandomAgent())),
                                      checkpoint=100,
                                      log_dir=log_dir).run(1000000))
 def run(self):
     log_dir = "./logs/bastille/TabularQLearning_MOISMCTSWithValueNetwork/" + str(
         time())
     print(str(log_dir))
     print(
         TensorboardWindJammersRunner(TabularQLearningAgent(),
                                      MOISMCTSWithValueNetworkAgent(
                                          100,
                                          SafeWindJammersRunner(
                                              RandomAgent(),
                                              RandomAgent())),
                                      checkpoint=100,
                                      log_dir=log_dir).run(1000000))
def run():

    log_dir = "./logs/bastilleMP/ReinforceWithMultipleTraj_Vs_TabularQLearning/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            ReinforceClassicWithMultipleTrajectoriesAgent(8, 12),
            TabularQLearningAgent(),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/DeepQLearning_Vs_TabularQLearning/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(DeepQLearningAgent(8, 12),
                                     TabularQLearningAgent(),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/MOISMCTSWithRandomRollouts_Vs_TabularQLearning/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(MOISMCTSWithRandomRolloutsAgent(
            100, SafeWindJammersRunner(RandomAgent(), RandomAgent())),
                                     TabularQLearningAgent(),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/ReinforceClassicWithMultipleTrajectories_Vs_TabularQLearningAgent/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            ReinforceClassicWithMultipleTrajectoriesAgent(8, 12),
            TabularQLearningAgent(),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_TabularQLearningAgent/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(RandomAgent(),
                                     TabularQLearningAgent(),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_RandomRollout_100/" + str(time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(RandomAgent(),
                                     RandomRolloutAgent(
                                         100,
                                         SafeWindJammersRunner(
                                             RandomAgent(), RandomAgent())),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_DeepQLearning/" + str(time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(RandomAgent(),
                                     DeepQLearningAgent(8, 12),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_DoubleQLearning/" + str(time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(RandomAgent(),
                                     DoubleQLearningAgent(),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_ReinforceClassic/" + str(time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(RandomAgent(),
                                     ReinforceClassicAgent(8, 12),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_ReinforceClassicWithMultipleTrajectories/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            RandomAgent(),
            ReinforceClassicWithMultipleTrajectoriesAgent(8, 12),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_PPOWithMultipleTrajectoriesMultiOutputs" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            RandomAgent(),
            PPOWithMultipleTrajectoriesMultiOutputsAgent(8, 12),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_MOISMCTSWithRandomRollouts/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(RandomAgent(),
                                     MOISMCTSWithRandomRolloutsAgent(
                                         100,
                                         SafeWindJammersRunner(
                                             RandomAgent(), RandomAgent())),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_MOISMCTSWithRandomRolloutsExpertThenApprentice/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            RandomAgent(),
            MOISMCTSWithRandomRolloutsExpertThenApprenticeAgent(
                100, SafeWindJammersRunner(RandomAgent(), RandomAgent()), 8,
                12),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/Random_Vs_MOISMCTSWithValueNetwork/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(RandomAgent(),
                                     MOISMCTSWithValueNetworkAgent(
                                         100,
                                         SafeWindJammersRunner(
                                             RandomAgent(), RandomAgent())),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_RandomRollout_100/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(TabularQLearningAgent(),
                                     RandomRolloutAgent(
                                         100,
                                         SafeWindJammersRunner(
                                             RandomAgent(), RandomAgent())),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_DeepQLearning/" + str(time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(TabularQLearningAgent(),
                                     DeepQLearningAgent(8, 12),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_DoubleQLearning/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(TabularQLearningAgent(),
                                     DoubleQLearningAgent(),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_ReinforceClassic/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(TabularQLearningAgent(),
                                     ReinforceClassicAgent(8, 12),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_ReinforceClassicWithMultipleTrajectories/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            TabularQLearningAgent(),
            ReinforceClassicWithMultipleTrajectoriesAgent(8, 12),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_PPOWithMultipleTrajectoriesMultiOutputs" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            TabularQLearningAgent(),
            PPOWithMultipleTrajectoriesMultiOutputsAgent(8, 12),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_MOISMCTSWithRandomRollouts/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(TabularQLearningAgent(),
                                     MOISMCTSWithRandomRolloutsAgent(
                                         100,
                                         SafeWindJammersRunner(
                                             RandomAgent(), RandomAgent())),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_MOISMCTSWithRandomRolloutsExpertThenApprentice/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(
            TabularQLearningAgent(),
            MOISMCTSWithRandomRolloutsExpertThenApprenticeAgent(
                100, SafeWindJammersRunner(RandomAgent(), RandomAgent()), 8,
                12),
            checkpoint=100,
            log_dir=log_dir).run(100000))

    log_dir = "./logs/bastilleMP/TabularQLearning_MOISMCTSWithValueNetwork/" + str(
        time())
    print(str(log_dir))
    print(
        TensorboardWindJammersRunner(TabularQLearningAgent(),
                                     MOISMCTSWithValueNetworkAgent(
                                         100,
                                         SafeWindJammersRunner(
                                             RandomAgent(), RandomAgent())),
                                     checkpoint=100,
                                     log_dir=log_dir).run(100000))