Exemplo n.º 1
0
    def plot_spectral_models(self):

        for component in self.get_components(tags=['pwn', 'composite']):
            fig, ax = plt.subplots()
            table = component['table']
            tag = component['tag']
            vals = []
            idx = 0

            energies = Energy.equal_log_spacing(emin=0.02,
                                                emax=100,
                                                unit='TeV',
                                                nbins=40)
            for row in table:
                idx += 1
                if (idx < 100):
                    spec = LogParabola(
                        amplitude=row['spec_norm'] * u.Unit('MeV-1 s-1 cm-2'),
                        alpha=row['spec_alpha'],
                        reference=1 * u.TeV,
                        beta=row['spec_beta'],
                    )
                    fluxes = []
                    e2dnde = []
                    for energy in energies:
                        dnde = spec.evaluate(
                            energy=energy,
                            amplitude=row['spec_norm'] *
                            u.Unit('MeV-1 s-1 cm-2'),
                            alpha=row['spec_alpha'],
                            reference=1 * u.TeV,
                            beta=row['spec_beta'],
                        )
                        fluxes.append(dnde.value)
                        e2dnde.append(
                            ((energy**2 * dnde).to('erg cm-2 s-1')).value)
                    ax.plot(energies.value,
                            e2dnde,
                            color='black',
                            alpha=0.2,
                            lw=2)
                else:
                    break

            ax.set_title('{} spectra'.format(component['tag']))
            ax.loglog()
            ax.set_xlabel('Energy (TeV)')
            ax.set_ylabel('e2dnde (erg cm-2 s-1)')
            ax.set_ylim(2e-18, 5e-10)

            fig.tight_layout()
            filename = 'ctadc_skymodel_gps_sources_spectra_{}.png'.format(
                component['tag'])
            log.info('Writing {}'.format(filename))
            fig.savefig(filename)
            plt.close(fig)
    neb_model = LogParabola(amplitude=amplitude, reference=reference, alpha=alphapar, beta=beta)    ###MAGIC   HESSII

elif spectype == 'ExponentialCutoffPowerLaw':
    neb_model = ExponentialCutoffPowerLaw(index=index, amplitude=amplitude, reference=reference, lambda_=lambda_) ## HESS

elif spectype == 'PowerLaw':
    neb_model = PowerLaw(index=index, amplitude=amplitude, reference=reference)    ### HEGRA

else:
    raise ValueError('Spectra Model must be either "LogParabola", "PowerLaw", or "ExponentialCutoffPowerLaw"')


energy_array = np.linspace(emin.value, emax.value, 300) * u.TeV
flare_plus_neb_model = np.zeros(len(energy_array)) * u.Unit('cm-2 s-1 TeV-1')
for i in range(len(energy_array)):
    flare_plus_neb_model.value[i] = (neb_model.evaluate(energy_array[i], amplitude=amplitude, reference=reference, alpha=alphapar, beta=beta).value + flare_model.evaluate(energy_array[i], index = flare_index, amplitude = flare_amplitude, reference = flare_reference,lambda_ = lambda_flare).value) * 1e11


#print flare_plus_neb_model
sum_model = TableModel(energy_array,flare_plus_neb_model,scale=1.0e-11)


# No EBL model needed
target = Target(name='Crab', model=sum_model)

#events = np.zeros(N_simul) * u.ct
cnts_specs = []

# Simulation
t_start = time.clock()