def test_is_pickleable(self, filters, strides):
        model = CNNMLPMergeModel(filters=filters,
                                 strides=strides,
                                 name='cnn_mlp_merge_model',
                                 padding='VALID',
                                 cnn_hidden_w_init=tf.constant_initializer(1),
                                 hidden_nonlinearity=None)
        outputs = model.build(self.obs_ph).outputs

        with tf.compat.v1.variable_scope(
                'cnn_mlp_merge_model/MLPMergeModel/mlp_concat', reuse=True):
            bias = tf.compat.v1.get_variable('output/bias')
            bias.load(tf.ones_like(bias).eval())

        output1 = self.sess.run(outputs,
                                feed_dict={self.obs_ph: self.obs_input})
        h = pickle.dumps(model)
        with tf.compat.v1.Session(graph=tf.Graph()) as sess:
            model_pickled = pickle.loads(h)
            input_ph = tf.compat.v1.placeholder(tf.float32,
                                                shape=(None, ) +
                                                self.input_shape,
                                                name='input')
            outputs = model_pickled.build(input_ph).outputs
            output2 = sess.run(outputs, feed_dict={input_ph: self.obs_input})

            assert np.array_equal(output1, output2)
    def test_output_value(self, filters, in_channels, strides, hidden_sizes):
        model = CNNMLPMergeModel(input_dim=self.input_shape,
                                 filters=filters,
                                 strides=strides,
                                 hidden_sizes=hidden_sizes,
                                 action_merge_layer=1,
                                 name='cnn_mlp_merge_model1',
                                 padding='VALID',
                                 cnn_hidden_w_init=tf.constant_initializer(1),
                                 hidden_nonlinearity=self.hidden_nonlinearity)

        model_out = model.build(self.obs_ph, self.action_ph).outputs
        filter_sum = 1

        # filter value after 3 layers of conv
        for filter_iter, in_channel in zip(filters, in_channels):
            filter_sum *= filter_iter[1][0] * filter_iter[1][1] * in_channel

        height_size = self.input_height
        width_size = self.input_width
        for filter_iter, stride in zip(filters, strides):
            height_size = int((height_size - filter_iter[1][0]) / stride) + 1
            width_size = int((width_size - filter_iter[1][1]) / stride) + 1
        flatten_shape = height_size * width_size * filters[-1][0]

        # flatten
        cnn_output = np.full((self.batch_size, flatten_shape),
                             filter_sum,
                             dtype=np.float32)

        with tf.compat.v1.variable_scope('cnn_mlp_merge_model1/MLPMergeModel',
                                         reuse=True):
            h0_w = tf.compat.v1.get_variable('mlp_concat/hidden_0/kernel')
            h0_b = tf.compat.v1.get_variable('mlp_concat/hidden_0/bias')
            out_w = tf.compat.v1.get_variable('mlp_concat/output/kernel')
            out_b = tf.compat.v1.get_variable('mlp_concat/output/bias')

        mlp_output = self.sess.run(model_out,
                                   feed_dict={
                                       self.obs_ph: self.obs_input,
                                       self.action_ph: self.action_input
                                   })

        # First layer
        h0_in = tf.matmul(cnn_output, h0_w) + h0_b
        h0_out = self.hidden_nonlinearity(h0_in)

        # output
        h1_in = tf.matmul(tf.concat([h0_out, self.action_input], 1),
                          out_w) + out_b

        # eval output
        out = self.sess.run(h1_in,
                            feed_dict={
                                self.obs_ph: self.obs_input,
                                self.action_ph: self.action_input
                            })

        np.testing.assert_array_equal(out, mlp_output)
Exemplo n.º 3
0
class ContinuousCNNQFunction(QFunction):
    """Q function based on a CNN-MLP structure for continuous action space.

    This class implements a Q value network to predict Q based on the
    input state and action. It uses an CNN and a MLP to fit the function
    of Q(s, a).

    Args:
        env_spec (garage.envs.env_spec.EnvSpec): Environment specification.
        filter_dims (tuple[int]): Dimension of the filters. For example,
            (3, 5) means there are two convolutional layers. The filter for
            first layer is of dimension (3 x 3) and the second one is of
            dimension (5 x 5).
        num_filters (tuple[int]): Number of filters. For example, (3, 32) means
            there are two convolutional layers. The filter for the first layer
            has 3 channels and the second one with 32 channels.
        strides (tuple[int]): The stride of the sliding window. For example,
            (1, 2) means there are two convolutional layers. The stride of the
            filter for first layer is 1 and that of the second layer is 2.
        hidden_sizes (tuple[int]): Output dimension of dense layer(s).
            For example, (32, 32) means the MLP of this q-function consists of
            two hidden layers, each with 32 hidden units.
        action_merge_layer (int): The index of layers at which to concatenate
            action inputs with the network. The indexing works like standard
            python list indexing. Index of 0 refers to the input layer
            (observation input) while an index of -1 points to the last
            hidden layer. Default parameter points to second layer from the
            end.
        name (str): Variable scope of the cnn.
        padding (str): The type of padding algorithm to use,
            either 'SAME' or 'VALID'.
        max_pooling (bool): Boolean for using max pooling layer or not.
        pool_shapes (tuple[int]): Dimension of the pooling layer(s). For
            example, (2, 2) means that all the pooling layers have
            shape (2, 2).
        pool_strides (tuple[int]): The strides of the pooling layer(s). For
            example, (2, 2) means that all the pooling layers have
            strides (2, 2).
        cnn_hidden_nonlinearity (callable): Activation function for
            intermediate dense layer(s) in the CNN. It should return a
            tf.Tensor. Set it to None to maintain a linear activation.
        hidden_nonlinearity (callable): Activation function for intermediate
            dense layer(s) in the MLP. It should return a tf.Tensor. Set it to
            None to maintain a linear activation.
        hidden_w_init (callable): Initializer function for the weight
            of intermediate dense layer(s) in the MLP. The function should
            return a tf.Tensor.
        hidden_b_init (callable): Initializer function for the bias
            of intermediate dense layer(s) in the MLP. The function should
            return a tf.Tensor.
        output_nonlinearity (callable): Activation function for output dense
            layer in the MLP. It should return a tf.Tensor. Set it to None
            to maintain a linear activation.
        output_w_init (callable): Initializer function for the weight
            of output dense layer(s) in the MLP. The function should return
            a tf.Tensor.
        output_b_init (callable): Initializer function for the bias
            of output dense layer(s) in the MLP. The function should return
            a tf.Tensor.
        layer_normalization (bool): Bool for using layer normalization or not.
    """

    def __init__(self,
                 env_spec,
                 filter_dims,
                 num_filters,
                 strides,
                 hidden_sizes=(256, ),
                 action_merge_layer=-2,
                 name=None,
                 padding='SAME',
                 max_pooling=False,
                 pool_strides=(2, 2),
                 pool_shapes=(2, 2),
                 cnn_hidden_nonlinearity=tf.nn.relu,
                 hidden_nonlinearity=tf.nn.relu,
                 hidden_w_init=tf.initializers.glorot_uniform(),
                 hidden_b_init=tf.zeros_initializer(),
                 output_nonlinearity=None,
                 output_w_init=tf.initializers.glorot_uniform(),
                 output_b_init=tf.zeros_initializer(),
                 layer_normalization=False):

        if (not isinstance(env_spec.observation_space, akro.Box)
                or not len(env_spec.observation_space.shape) in (2, 3)):
            raise ValueError(
                '{} can only process 2D, 3D akro.Image or'
                ' akro.Box observations, but received an env_spec with '
                'observation_space of type {} and shape {}'.format(
                    type(self).__name__,
                    type(env_spec.observation_space).__name__,
                    env_spec.observation_space.shape))

        super().__init__(name)
        self._env_spec = env_spec
        self._filter_dims = filter_dims
        self._num_filters = num_filters
        self._strides = strides
        self._hidden_sizes = hidden_sizes
        self._action_merge_layer = action_merge_layer
        self._padding = padding
        self._max_pooling = max_pooling
        self._pool_strides = pool_strides
        self._pool_shapes = pool_shapes
        self._cnn_hidden_nonlinearity = cnn_hidden_nonlinearity
        self._hidden_nonlinearity = hidden_nonlinearity
        self._hidden_w_init = hidden_w_init
        self._hidden_b_init = hidden_b_init
        self._output_nonlinearity = output_nonlinearity
        self._output_w_init = output_w_init
        self._output_b_init = output_b_init
        self._layer_normalization = layer_normalization

        self._obs_dim = self._env_spec.observation_space.shape
        self._action_dim = self._env_spec.action_space.shape

        self.model = CNNMLPMergeModel(
            filter_dims=self._filter_dims,
            num_filters=self._num_filters,
            strides=self._strides,
            hidden_sizes=self._hidden_sizes,
            action_merge_layer=self._action_merge_layer,
            padding=self._padding,
            max_pooling=self._max_pooling,
            pool_strides=self._pool_strides,
            pool_shapes=self._pool_shapes,
            cnn_hidden_nonlinearity=self._cnn_hidden_nonlinearity,
            hidden_nonlinearity=self._hidden_nonlinearity,
            hidden_w_init=self._hidden_w_init,
            hidden_b_init=self._hidden_b_init,
            output_nonlinearity=self._output_nonlinearity,
            output_w_init=self._output_w_init,
            output_b_init=self._output_b_init,
            layer_normalization=self._layer_normalization)

        self._initialize()

    def _initialize(self):
        obs_ph = tf.compat.v1.placeholder(tf.float32, (None, ) + self._obs_dim,
                                          name='state')
        action_ph = tf.compat.v1.placeholder(tf.float32,
                                             (None, ) + self._action_dim,
                                             name='action')
        if isinstance(self._env_spec.observation_space, akro.Image):
            obs_ph = obs_ph / 255.0

        with tf.compat.v1.variable_scope(self.name) as vs:
            self._variable_scope = vs
            self.model.build(obs_ph, action_ph)

        self._f_qval = tf.compat.v1.get_default_session().make_callable(
            self.model.networks['default'].outputs,
            feed_list=[obs_ph, action_ph])

    @property
    def inputs(self):
        """tuple[tf.Tensor]: The observation and action input tensors.

        The returned tuple contains two tensors. The first is the observation
        tensor with shape :math:`(N, O*)`, and the second is the action tensor
        with shape :math:`(N, A*)`.
        """
        return self.model.networks['default'].inputs

    def get_qval(self, observation, action):
        """Q Value of the network.

        Args:
            observation (np.ndarray): Observation input of shape
                :math:`(N, O*)`.
            action (np.ndarray): Action input of shape :math:`(N, A*)`.

        Returns:
            np.ndarray: Array of shape :math:`(N, )` containing Q values
                corresponding to each (obs, act) pair.

        """
        if isinstance(self._env_spec.observation_space, akro.Image):
            if len(observation.shape) <= 3:
                observation = self._env_spec.observation_space.unflatten(
                    observation)
            observation = observation / 255.0
        return self._f_qval(observation, action)

    # pylint: disable=arguments-differ
    def get_qval_sym(self, state_input, action_input, name):
        """Symbolic graph for q-network.

        Args:
            state_input (tf.Tensor): The state input tf.Tensor of shape
                :math:`(N, O*)`.
            action_input (tf.Tensor): The action input tf.Tensor of shape
                :math:`(N, A*)`.
            name (str): Network variable scope.

        Return:
            tf.Tensor: The output Q value tensor of shape :math:`(N, )`.

        """
        with tf.compat.v1.variable_scope(self._variable_scope):
            if isinstance(self._env_spec.observation_space, akro.Image):
                state_input /= 255.0
            return self.model.build(state_input, action_input, name=name)

    def clone(self, name):
        """Return a clone of the Q-function.

        It only copies the configuration of the Q-function,
        not the parameters.

        Args:
            name (str): Name of the newly created q-function.

        Return:
            ContinuousCNNQFunction: Cloned Q function.
        """
        return self.__class__(name=name,
                              env_spec=self._env_spec,
                              filter_dims=self._filter_dims,
                              num_filters=self._num_filters,
                              strides=self._strides,
                              hidden_sizes=self._hidden_sizes,
                              action_merge_layer=self._action_merge_layer,
                              padding=self._padding,
                              max_pooling=self._max_pooling,
                              pool_shapes=self._pool_shapes,
                              pool_strides=self._pool_strides,
                              hidden_nonlinearity=self._hidden_nonlinearity,
                              hidden_w_init=self._hidden_w_init,
                              hidden_b_init=self._hidden_b_init,
                              output_nonlinearity=self._output_nonlinearity,
                              output_w_init=self._output_w_init,
                              output_b_init=self._output_b_init,
                              layer_normalization=self._layer_normalization)

    def __getstate__(self):
        """Object.__getstate__.

        Returns:
            dict: The state.

        """
        new_dict = self.__dict__.copy()
        del new_dict['_f_qval']
        return new_dict

    def __setstate__(self, state):
        """See `Object.__setstate__.

        Args:
            state (dict): Unpickled state of this object.

        """
        self.__dict__.update(state)
        self._initialize()
Exemplo n.º 4
0
    def test_output_value_max_pooling(self, filter_sizes, in_channels,
                                      out_channels, strides, pool_strides,
                                      pool_shapes):
        model = CNNMLPMergeModel(filter_dims=filter_sizes,
                                 num_filters=out_channels,
                                 strides=strides,
                                 name='cnn_mlp_merge_model2',
                                 padding='VALID',
                                 max_pooling=True,
                                 action_merge_layer=1,
                                 pool_strides=pool_strides,
                                 pool_shapes=pool_shapes,
                                 cnn_hidden_w_init=tf.constant_initializer(1),
                                 hidden_nonlinearity=self.hidden_nonlinearity)

        model_out = model.build(self.obs_ph, self.action_ph)

        filter_sum = 1
        # filter value after 3 layers of conv
        for filter_size, in_channel in zip(filter_sizes, in_channels):
            filter_sum *= filter_size * filter_size * in_channel

        current_size = self.input_width
        for filter_size, stride in zip(filter_sizes, strides):
            current_size = int((current_size - filter_size) / stride) + 1
            current_size = int(
                (current_size - pool_shapes[0]) / pool_strides[0]) + 1

        flatten_shape = current_size * current_size * out_channels[-1]

        # flatten
        cnn_output = np.full((self.batch_size, flatten_shape),
                             filter_sum,
                             dtype=np.float32)

        # feed cnn output to MLPMergeModel
        with tf.compat.v1.variable_scope('cnn_mlp_merge_model2/MLPMergeModel',
                                         reuse=True):
            h0_w = tf.compat.v1.get_variable('mlp_concat/hidden_0/kernel')
            h0_b = tf.compat.v1.get_variable('mlp_concat/hidden_0/bias')
            out_w = tf.compat.v1.get_variable('mlp_concat/output/kernel')
            out_b = tf.compat.v1.get_variable('mlp_concat/output/bias')

        mlp_output = self.sess.run(model_out,
                                   feed_dict={
                                       self.obs_ph: self.obs_input,
                                       self.action_ph: self.action_input
                                   })

        # First layer
        h0_in = tf.matmul(cnn_output, h0_w) + h0_b
        h0_out = self.hidden_nonlinearity(h0_in)

        # output
        h1_in = tf.matmul(tf.concat([h0_out, self.action_input], 1),
                          out_w) + out_b

        # eval output
        out = self.sess.run(h1_in,
                            feed_dict={
                                self.obs_ph: self.obs_input,
                                self.action_ph: self.action_input
                            })

        np.testing.assert_array_equal(out, mlp_output)