Exemplo n.º 1
0
    def test_get_action(self, mock_rand, obs_dim, action_dim, hidden_dim):
        mock_rand.return_value = 0

        env = TfEnv(DummyDiscreteEnv(obs_dim=obs_dim, action_dim=action_dim))

        with mock.patch(('garage.tf.policies.'
                         'categorical_lstm_policy_with_model.LSTMModel'),
                        new=SimpleLSTMModel):
            policy = CategoricalLSTMPolicyWithModel(env_spec=env.spec,
                                                    state_include_action=False)

        policy.reset()
        obs = env.reset()

        expected_prob = np.full(action_dim, 0.5)

        action, agent_info = policy.get_action(obs)
        assert env.action_space.contains(action)
        assert action == 0
        assert np.array_equal(agent_info['prob'], expected_prob)

        actions, agent_infos = policy.get_actions([obs])
        for action, prob in zip(actions, agent_infos['prob']):
            assert env.action_space.contains(action)
            assert action == 0
            assert np.array_equal(prob, expected_prob)
Exemplo n.º 2
0
class TestCategoricalLSTMPolicyWithModelTransit(TfGraphTestCase):
    def setUp(self):
        super().setUp()
        env = TfEnv(DummyDiscreteEnv(obs_dim=(1, ), action_dim=1))
        self.default_initializer = tf.constant_initializer(1)
        self.default_hidden_nonlinearity = tf.nn.tanh
        self.default_recurrent_nonlinearity = tf.nn.sigmoid
        self.default_output_nonlinearity = None
        self.time_step = 1

        self.policy1 = CategoricalLSTMPolicy(
            env_spec=env.spec,
            hidden_dim=4,
            hidden_nonlinearity=self.default_hidden_nonlinearity,
            recurrent_nonlinearity=self.default_recurrent_nonlinearity,
            recurrent_w_x_init=self.default_initializer,
            recurrent_w_h_init=self.default_initializer,
            output_nonlinearity=self.default_output_nonlinearity,
            output_w_init=self.default_initializer,
            state_include_action=True,
            name='P1')
        self.policy2 = CategoricalLSTMPolicy(
            env_spec=env.spec,
            hidden_dim=4,
            hidden_nonlinearity=self.default_hidden_nonlinearity,
            recurrent_nonlinearity=self.default_recurrent_nonlinearity,
            recurrent_w_x_init=self.default_initializer,
            recurrent_w_h_init=self.default_initializer,
            output_nonlinearity=self.default_output_nonlinearity,
            output_w_init=tf.constant_initializer(2),
            state_include_action=True,
            name='P2')

        self.sess.run(tf.global_variables_initializer())

        self.policy3 = CategoricalLSTMPolicyWithModel(
            env_spec=env.spec,
            hidden_dim=4,
            hidden_nonlinearity=self.default_hidden_nonlinearity,
            hidden_w_init=self.default_initializer,
            recurrent_nonlinearity=self.default_recurrent_nonlinearity,
            recurrent_w_init=self.default_initializer,
            output_nonlinearity=self.default_output_nonlinearity,
            output_w_init=self.default_initializer,
            state_include_action=True,
            name='P3')
        self.policy4 = CategoricalLSTMPolicyWithModel(
            env_spec=env.spec,
            hidden_dim=4,
            hidden_nonlinearity=self.default_hidden_nonlinearity,
            hidden_w_init=self.default_initializer,
            recurrent_nonlinearity=self.default_recurrent_nonlinearity,
            recurrent_w_init=self.default_initializer,
            output_nonlinearity=self.default_output_nonlinearity,
            output_w_init=tf.constant_initializer(2),
            state_include_action=True,
            name='P4')

        self.policy1.reset()
        self.policy2.reset()
        self.policy3.reset()
        self.policy4.reset()
        self.obs = [env.reset()]
        self.obs = np.concatenate([self.obs for _ in range(self.time_step)],
                                  axis=0)

        self.obs_ph = tf.placeholder(
            tf.float32, shape=(None, None, env.observation_space.flat_dim))
        self.action_ph = tf.placeholder(
            tf.float32, shape=(None, None, env.action_space.flat_dim))

        self.dist1_sym = self.policy1.dist_info_sym(
            obs_var=self.obs_ph,
            state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))},
            name='p1_sym')
        self.dist2_sym = self.policy2.dist_info_sym(
            obs_var=self.obs_ph,
            state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))},
            name='p2_sym')
        self.dist3_sym = self.policy3.dist_info_sym(
            obs_var=self.obs_ph,
            state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))},
            name='p3_sym')
        self.dist4_sym = self.policy4.dist_info_sym(
            obs_var=self.obs_ph,
            state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))},
            name='p4_sym')

    def test_dist_info_sym_output(self):
        # batch size = 2
        dist1 = self.sess.run(
            self.dist1_sym, feed_dict={self.obs_ph: [self.obs, self.obs]})
        dist2 = self.sess.run(
            self.dist2_sym, feed_dict={self.obs_ph: [self.obs, self.obs]})
        dist3 = self.sess.run(
            self.dist3_sym, feed_dict={self.obs_ph: [self.obs, self.obs]})
        dist4 = self.sess.run(
            self.dist4_sym, feed_dict={self.obs_ph: [self.obs, self.obs]})

        assert np.array_equal(dist1['prob'], dist3['prob'])
        assert np.array_equal(dist2['prob'], dist4['prob'])

    @mock.patch('numpy.random.rand')
    def test_get_action(self, mock_rand):
        mock_rand.return_value = 0

        action1, agent_info1 = self.policy1.get_action(self.obs)
        action2, agent_info2 = self.policy2.get_action(self.obs)
        action3, agent_info3 = self.policy3.get_action(self.obs)
        action4, agent_info4 = self.policy4.get_action(self.obs)

        assert action1 == action3
        assert action2 == action4
        assert np.array_equal(agent_info1['prob'], agent_info3['prob'])
        assert np.array_equal(agent_info2['prob'], agent_info4['prob'])

        actions1, agent_infos1 = self.policy1.get_actions([self.obs])
        actions2, agent_infos2 = self.policy2.get_actions([self.obs])
        actions3, agent_infos3 = self.policy3.get_actions([self.obs])
        actions4, agent_infos4 = self.policy4.get_actions([self.obs])

        assert np.array_equal(actions1, actions3)
        assert np.array_equal(actions2, actions4)
        assert np.array_equal(agent_infos1['prob'], agent_infos3['prob'])
        assert np.array_equal(agent_infos2['prob'], agent_infos4['prob'])

    def test_kl_sym(self):
        kl_diff_sym1 = self.policy1.distribution.kl_sym(
            self.dist1_sym, self.dist2_sym)
        objective1 = tf.reduce_mean(kl_diff_sym1)

        kl_func = tensor_utils.compile_function([self.obs_ph], objective1)
        kl1 = kl_func([self.obs, self.obs])

        kl_diff_sym2 = self.policy3.distribution.kl_sym(
            self.dist3_sym, self.dist4_sym)
        objective2 = tf.reduce_mean(kl_diff_sym2)

        kl_func = tensor_utils.compile_function([self.obs_ph], objective2)
        kl2 = kl_func([self.obs, self.obs])

        assert np.array_equal(kl1, kl2)

    def test_log_likehihood_sym(self):
        log_prob_sym1 = self.policy1.distribution.log_likelihood_sym(
            self.action_ph, self.dist1_sym)
        log_prob_func = tensor_utils.compile_function(
            [self.obs_ph, self.action_ph], log_prob_sym1)
        log_prob1 = log_prob_func([self.obs, self.obs],
                                  np.ones((2, self.time_step, 1)))

        log_prob_sym2 = self.policy3.distribution.log_likelihood_sym(
            self.action_ph, self.dist3_sym)
        log_prob_func2 = tensor_utils.compile_function(
            [self.obs_ph, self.action_ph], log_prob_sym2)
        log_prob2 = log_prob_func2([self.obs, self.obs],
                                   np.ones((2, self.time_step, 1)))
        assert np.array_equal(log_prob1, log_prob2)

        log_prob_sym1 = self.policy2.distribution.log_likelihood_sym(
            self.action_ph, self.dist2_sym)
        log_prob_func = tensor_utils.compile_function(
            [self.obs_ph, self.action_ph], log_prob_sym1)
        log_prob1 = log_prob_func([self.obs, self.obs],
                                  np.ones((2, self.time_step, 1)))

        log_prob_sym2 = self.policy4.distribution.log_likelihood_sym(
            self.action_ph, self.dist4_sym)
        log_prob_func2 = tensor_utils.compile_function(
            [self.obs_ph, self.action_ph], log_prob_sym2)
        log_prob2 = log_prob_func2([self.obs, self.obs],
                                   np.ones((2, self.time_step, 1)))
        assert np.array_equal(log_prob1, log_prob2)

    def test_policy_entropy_sym(self):
        entropy_sym1 = self.policy1.distribution.entropy_sym(
            self.dist1_sym, name='entropy_sym1')
        entropy_func = tensor_utils.compile_function([self.obs_ph],
                                                     entropy_sym1)
        entropy1 = entropy_func([self.obs, self.obs])

        entropy_sym2 = self.policy3.distribution.entropy_sym(
            self.dist3_sym, name='entropy_sym1')
        entropy_func = tensor_utils.compile_function([self.obs_ph],
                                                     entropy_sym2)
        entropy2 = entropy_func([self.obs, self.obs])
        assert np.array_equal(entropy1, entropy2)

    def test_likelihood_ratio_sym(self):
        likelihood_ratio_sym1 = self.policy1.distribution.likelihood_ratio_sym(
            self.action_ph,
            self.dist1_sym,
            self.dist2_sym,
            name='li_ratio_sym1')
        likelihood_ratio_func = tensor_utils.compile_function(
            [self.action_ph, self.obs_ph], likelihood_ratio_sym1)
        likelihood_ratio1 = likelihood_ratio_func(
            np.ones((2, 1, 1)), [self.obs, self.obs])

        likelihood_ratio_sym2 = self.policy3.distribution.likelihood_ratio_sym(
            self.action_ph,
            self.dist3_sym,
            self.dist4_sym,
            name='li_ratio_sym2')
        likelihood_ratio_func = tensor_utils.compile_function(
            [self.action_ph, self.obs_ph], likelihood_ratio_sym2)
        likelihood_ratio2 = likelihood_ratio_func(
            np.ones((2, 1, 1)), [self.obs, self.obs])

        assert np.array_equal(likelihood_ratio1, likelihood_ratio2)