Exemplo n.º 1
0
    def test_get_qval_max_pooling(self, filters, strides, pool_strides,
                                  pool_shapes):
        env = GarageEnv(DummyDiscretePixelEnv())
        obs = env.reset()

        with mock.patch(('garage.tf.models.'
                         'cnn_mlp_merge_model.CNNModelWithMaxPooling'),
                        new=SimpleCNNModelWithMaxPooling):
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.MLPMergeModel'),
                            new=SimpleMLPMergeModel):
                qf = ContinuousCNNQFunction(env_spec=env.spec,
                                            filters=filters,
                                            strides=strides,
                                            max_pooling=True,
                                            pool_strides=pool_strides,
                                            pool_shapes=pool_shapes)

        action_dim = env.action_space.shape

        obs, _, _, _ = env.step(1)

        act = np.full(action_dim, 0.5)
        expected_output = np.full((1, ), 0.5)

        outputs = qf.get_qval([obs], [act])

        assert np.array_equal(outputs[0], expected_output)

        outputs = qf.get_qval([obs, obs, obs], [act, act, act])

        for output in outputs:
            assert np.array_equal(output, expected_output)
    def test_obs_not_image(self):
        env = TfEnv(DummyDiscretePixelEnv())

        with mock.patch(('tests.fixtures.models.SimpleCNNModel._build'),
                        autospec=True,
                        side_effect=SimpleCNNModel._build) as build:
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.CNNModel'),
                            new=SimpleCNNModel):
                with mock.patch(('garage.tf.models.'
                                 'cnn_mlp_merge_model.MLPMergeModel'),
                                new=SimpleMLPMergeModel):

                    qf = ContinuousCNNQFunction(env_spec=env.spec,
                                                filter_dims=(3, ),
                                                num_filters=(5, ),
                                                strides=(1, ))

                    # ensure non-image obses are not normalized
                    # in _initialize() and get_qval()

                    normalized_obs = build.call_args_list[0][0][1]
                    assert normalized_obs == qf.inputs[0]

                    fake_obs = [
                        np.full(env.spec.observation_space.shape, 255.)
                    ]

                    assert (self.sess.run(normalized_obs,
                                          feed_dict={qf.inputs[0]:
                                                     fake_obs}) == 255.).all()

                    # ensure non-image obses are not normalized
                    # in get_qval_sym()

                    obs_dim = env.spec.observation_space.shape
                    state_input = tf.compat.v1.placeholder(tf.float32,
                                                           shape=(None, ) +
                                                           obs_dim)

                    act_dim = env.spec.observation_space.shape
                    action_input = tf.compat.v1.placeholder(tf.float32,
                                                            shape=(None, ) +
                                                            act_dim)

                    qf.get_qval_sym(state_input, action_input, name='another')
                    normalized_obs = build.call_args_list[1][0][1]

                    assert (self.sess.run(normalized_obs,
                                          feed_dict={state_input:
                                                     fake_obs}) == 255.).all()
 def test_not_box(self):
     with pytest.raises(ValueError):
         dict_env = TfEnv(DummyDictEnv())
         ContinuousCNNQFunction(env_spec=dict_env.spec,
                                filter_dims=(3, ),
                                num_filters=(5, ),
                                strides=(1, ))
 def test_invalid_obs_dim(self, obs_dim):
     with pytest.raises(ValueError):
         env = TfEnv(DummyDiscreteEnv(obs_dim=obs_dim))
         ContinuousCNNQFunction(env_spec=env.spec,
                                filter_dims=(3, ),
                                num_filters=(5, ),
                                strides=(1, ))
Exemplo n.º 5
0
    def test_obs_is_image(self):
        image_env = GarageEnv(DummyDiscretePixelEnv(), is_image=True)
        with mock.patch(('tests.fixtures.models.SimpleCNNModel._build'),
                        autospec=True,
                        side_effect=SimpleCNNModel._build) as build:
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.CNNModel'),
                            new=SimpleCNNModel):
                with mock.patch(('garage.tf.models.'
                                 'cnn_mlp_merge_model.MLPMergeModel'),
                                new=SimpleMLPMergeModel):

                    qf = ContinuousCNNQFunction(env_spec=image_env.spec,
                                                filters=((5, (3, 3)), ),
                                                strides=(1, ))

                    fake_obs = [
                        np.full(image_env.spec.observation_space.shape, 255)
                    ]

                    # make sure image obses are normalized in _initialize()
                    # and get_qval
                    normalized_obs = build.call_args_list[0][0][1]
                    assert normalized_obs != qf.inputs[0]

                    assert (self.sess.run(normalized_obs,
                                          feed_dict={qf.inputs[0]:
                                                     fake_obs}) == 1.).all()

                    # make sure image obses are normalized in get_qval_sim()

                    obs_dim = image_env.spec.observation_space.shape
                    state_input = tf.compat.v1.placeholder(tf.float32,
                                                           shape=(None, ) +
                                                           obs_dim)

                    act_dim = image_env.spec.observation_space.shape
                    action_input = tf.compat.v1.placeholder(tf.float32,
                                                            shape=(None, ) +
                                                            act_dim)

                    qf.build(state_input, action_input, name='another')
                    normalized_obs = build.call_args_list[1][0][1]

                    assert (self.sess.run(normalized_obs,
                                          feed_dict={state_input:
                                                     fake_obs}) == 1.).all()
    def test_clone(self, filters, strides):
        env = GarageEnv(DummyDiscretePixelEnv())

        with mock.patch(('garage.tf.models.'
                         'cnn_mlp_merge_model.CNNModel'),
                        new=SimpleCNNModel):
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.MLPMergeModel'),
                            new=SimpleMLPMergeModel):
                qf = ContinuousCNNQFunction(env_spec=env.spec,
                                            filters=filters,
                                            strides=strides)

                qf_clone = qf.clone('another_qf')

        # pylint: disable=protected-access
        assert qf_clone._filters == qf._filters
        assert qf_clone._strides == qf._strides
Exemplo n.º 7
0
    def test_clone(self, filters, strides):
        env = GymEnv(DummyDiscretePixelEnv())

        with mock.patch(('garage.tf.models.'
                         'cnn_mlp_merge_model.CNNModel'),
                        new=SimpleCNNModel):
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.MLPMergeModel'),
                            new=SimpleMLPMergeModel):
                qf = ContinuousCNNQFunction(env_spec=env.spec,
                                            filters=filters,
                                            strides=strides)

                qf_clone = qf.clone('another_qf')

        # pylint: disable=protected-access
        assert qf_clone._filters == qf._filters
        assert qf_clone._strides == qf._strides
        # pylint: enable=protected-access
        for cloned_param, param in zip(qf_clone.parameters.values(),
                                       qf.parameters.values()):
            assert np.array_equal(cloned_param, param)
    def test_is_pickleable(self, filter_dims, num_filters, strides):

        env = TfEnv(DummyDiscretePixelEnv())
        obs = env.reset()

        with mock.patch(('garage.tf.models.'
                         'cnn_mlp_merge_model.CNNModel'),
                        new=SimpleCNNModel):
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.MLPMergeModel'),
                            new=SimpleMLPMergeModel):
                qf = ContinuousCNNQFunction(env_spec=env.spec,
                                            filter_dims=filter_dims,
                                            num_filters=num_filters,
                                            strides=strides)

        action_dim = env.action_space.shape

        obs, _, _, _ = env.step(1)
        act = np.full(action_dim, 0.5)
        _, _ = qf.inputs

        with tf.compat.v1.variable_scope(
                'ContinuousCNNQFunction/CNNMLPMergeModel/SimpleMLPMergeModel',
                reuse=True):
            return_var = tf.compat.v1.get_variable('return_var')
        # assign it to all one
        return_var.load(tf.ones_like(return_var).eval())

        output1 = qf.get_qval([obs], [act])

        h_data = pickle.dumps(qf)
        with tf.compat.v1.Session(graph=tf.Graph()):
            qf_pickled = pickle.loads(h_data)
            _, _ = qf_pickled.inputs
            output2 = qf_pickled.get_qval([obs], [act])

        assert np.array_equal(output1, output2)
    def test_get_qval(self, filter_dims, num_filters, strides):
        env = TfEnv(DummyDiscretePixelEnv())
        obs = env.reset()

        with mock.patch(('garage.tf.models.'
                         'cnn_mlp_merge_model.CNNModel'),
                        new=SimpleCNNModel):
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.MLPMergeModel'),
                            new=SimpleMLPMergeModel):
                qf = ContinuousCNNQFunction(env_spec=env.spec,
                                            filter_dims=filter_dims,
                                            num_filters=num_filters,
                                            strides=strides)

        action_dim = env.action_space.shape

        obs, _, _, _ = env.step(1)

        act = np.full(action_dim, 0.5)
        expected_output = np.full((1, ), 0.5)

        outputs = qf.get_qval([obs], [act])

        assert np.array_equal(outputs[0], expected_output)

        outputs = qf.get_qval([obs, obs, obs], [act, act, act])

        for output in outputs:
            assert np.array_equal(output, expected_output)

        # make sure observations are unflattened

        obs = env.observation_space.flatten(obs)
        qf._f_qval = mock.MagicMock()

        qf.get_qval([obs], [act])
        unflattened_obs = qf._f_qval.call_args_list[0][0][0]
        assert unflattened_obs.shape[1:] == env.spec.observation_space.shape

        qf.get_qval([obs, obs], [act, act])
        unflattened_obs = qf._f_qval.call_args_list[1][0][0]
        assert unflattened_obs.shape[1:] == env.spec.observation_space.shape
    def test_get_qval_sym(self, filter_dims, num_filters, strides):
        env = TfEnv(DummyDiscretePixelEnv())
        obs = env.reset()

        with mock.patch(('garage.tf.models.'
                         'cnn_mlp_merge_model.CNNModel'),
                        new=SimpleCNNModel):
            with mock.patch(('garage.tf.models.'
                             'cnn_mlp_merge_model.MLPMergeModel'),
                            new=SimpleMLPMergeModel):
                qf = ContinuousCNNQFunction(env_spec=env.spec,
                                            filter_dims=filter_dims,
                                            num_filters=num_filters,
                                            strides=strides)
        action_dim = env.action_space.shape

        obs, _, _, _ = env.step(1)
        act = np.full(action_dim, 0.5)

        output1 = qf.get_qval([obs], [act])

        input_var1 = tf.compat.v1.placeholder(tf.float32,
                                              shape=(None, ) + obs.shape)
        input_var2 = tf.compat.v1.placeholder(tf.float32,
                                              shape=(None, ) + act.shape)
        q_vals = qf.get_qval_sym(input_var1, input_var2, 'another')

        output2 = self.sess.run(q_vals,
                                feed_dict={
                                    input_var1: [obs],
                                    input_var2: [act]
                                })

        expected_output = np.full((1, ), 0.5)

        assert np.array_equal(output1, output2)
        assert np.array_equal(output2[0], expected_output)
Exemplo n.º 11
0
 def test_not_box(self):
     with pytest.raises(ValueError):
         dict_env = GarageEnv(DummyDictEnv())
         ContinuousCNNQFunction(env_spec=dict_env.spec,
                                filters=((5, (3, 3)), ),
                                strides=(1, ))