Exemplo n.º 1
0
    def test_log_likelihood_sym(self, output_dim):
        input_shape = (28, 28, 3)
        gcr = GaussianCNNRegressorWithModel(
            input_shape=input_shape,
            num_filters=(3, 6),
            filter_dims=(3, 3),
            strides=(1, 1),
            padding='SAME',
            hidden_sizes=(32, ),
            output_dim=1,
            adaptive_std=False,
            use_trust_region=False)

        new_input_var = tf.placeholder(
            tf.float32, shape=(None, ) + input_shape)
        new_ys_var = tf.placeholder(
            dtype=tf.float32, name='ys', shape=(None, output_dim))

        data = np.full(input_shape, 0.5)
        label = np.ones(output_dim)

        outputs = gcr.log_likelihood_sym(
            new_input_var, new_ys_var, name='ll_sym')
        ll_from_sym = self.sess.run(
            outputs, feed_dict={
                new_input_var: [data],
                new_ys_var: [label]
            })
        mean, log_std = gcr._f_pdists([data])
        ll = gcr.model.networks['default'].dist.log_likelihood(
            [label], dict(mean=mean, log_std=log_std))
        assert np.allclose(ll, ll_from_sym, rtol=0, atol=1e-5)
Exemplo n.º 2
0
    def test_is_pickleable(self):
        input_shape = (28, 28, 3)
        gcr = GaussianCNNRegressorWithModel(
            input_shape=input_shape,
            num_filters=(3, 6),
            filter_dims=(3, 3),
            strides=(1, 1),
            padding='SAME',
            hidden_sizes=(32, ),
            output_dim=1,
            adaptive_std=False,
            use_trust_region=False)

        with tf.variable_scope(
                'GaussianCNNRegressorWithModel/GaussianCNNRegressorModel',
                reuse=True):
            bias = tf.get_variable('dist_params/mean_network/hidden_0/bias')
        bias.load(tf.ones_like(bias).eval())

        result1 = gcr.predict([np.ones(input_shape)])
        h = pickle.dumps(gcr)

        with tf.Session(graph=tf.Graph()):
            gcr_pickled = pickle.loads(h)
            result2 = gcr_pickled.predict([np.ones(input_shape)])
            assert np.array_equal(result1, result2)
Exemplo n.º 3
0
    def test_fit_without_trusted_region(self):
        gcr = GaussianCNNRegressorWithModel(
            input_shape=(10, 10, 3),
            num_filters=(3, 6),
            filter_dims=(3, 3),
            strides=(1, 1),
            padding='SAME',
            hidden_sizes=(32, ),
            output_dim=1,
            adaptive_std=False,
            use_trust_region=False)
        train_data, test_data = get_train_test_data()
        observations, returns = train_data

        for _ in range(20):
            gcr.fit(observations, returns)

        paths, expected = test_data

        prediction = gcr.predict(paths['observations'])
        average_error = 0.0
        for i in range(len(expected)):
            average_error += np.abs(expected[i] - prediction[i])
        average_error /= len(expected)
        assert average_error <= 0.05
    def __init__(
            self,
            env_spec,
            subsample_factor=1.,
            regressor_args=None,
            name='GaussianCNNBaselineWithModel',
    ):
        super().__init__(env_spec)
        if regressor_args is None:
            regressor_args = dict()

        self._regressor = GaussianCNNRegressorWithModel(
            input_shape=(env_spec.observation_space.shape),
            output_dim=1,
            name=name,
            **regressor_args)
        self.name = name
Exemplo n.º 5
0
    def test_fit_unnormalized(self):
        gcr = GaussianCNNRegressorWithModel(
            input_shape=(10, 10, 3),
            num_filters=(3, 6),
            filter_dims=(3, 3),
            strides=(1, 1),
            padding='SAME',
            hidden_sizes=(32, ),
            output_dim=1,
            adaptive_std=True,
            normalize_inputs=False,
            normalize_outputs=False)

        train_data, test_data = get_train_test_data()
        observations, returns = train_data

        for _ in range(20):
            gcr.fit(observations, returns)

        paths, expected = test_data

        prediction = gcr.predict(paths['observations'])
        average_error = 0.0
        for i in range(len(expected)):
            average_error += np.abs(expected[i] - prediction[i])
        average_error /= len(expected)
        assert average_error <= 0.1

        x_mean = self.sess.run(gcr.model.networks['default'].x_mean)
        x_mean_expected = np.zeros_like(x_mean)
        x_std = self.sess.run(gcr.model.networks['default'].x_std)
        x_std_expected = np.ones_like(x_std)
        assert np.array_equal(x_mean, x_mean_expected)
        assert np.array_equal(x_std, x_std_expected)

        y_mean = self.sess.run(gcr.model.networks['default'].y_mean)
        y_mean_expected = np.zeros_like(y_mean)
        y_std = self.sess.run(gcr.model.networks['default'].y_std)
        y_std_expected = np.ones_like(y_std)

        assert np.allclose(y_mean, y_mean_expected)
        assert np.allclose(y_std, y_std_expected)
class GaussianCNNBaselineWithModel(Baseline):
    """
    GaussianCNNBaseline With Model.

    It fits the input data to a gaussian distribution estimated by a CNN.

    Args:
        env_spec (garage.envs.env_spec.EnvSpec): Environment specification.
        subsample_factor (float): The factor to subsample the data. By
            default it is 1.0, which means using all the data.
        regressor_args (dict): Arguments for regressor.
    """

    def __init__(
            self,
            env_spec,
            subsample_factor=1.,
            regressor_args=None,
            name='GaussianCNNBaselineWithModel',
    ):
        super().__init__(env_spec)
        if regressor_args is None:
            regressor_args = dict()

        self._regressor = GaussianCNNRegressorWithModel(
            input_shape=(env_spec.observation_space.shape),
            output_dim=1,
            name=name,
            **regressor_args)
        self.name = name

    @overrides
    def fit(self, paths):
        """Fit regressor based on paths."""
        observations = np.concatenate([p['observations'] for p in paths])
        returns = np.concatenate([p['returns'] for p in paths])
        self._regressor.fit(observations, returns.reshape((-1, 1)))

    @overrides
    def predict(self, path):
        """Predict value based on paths."""
        return self._regressor.predict(path['observations']).flatten()

    @overrides
    def get_param_values(self, **tags):
        """Get parameter values."""
        return self._regressor.get_param_values(**tags)

    @overrides
    def set_param_values(self, flattened_params, **tags):
        """Set parameter values to val."""
        self._regressor.set_param_values(flattened_params, **tags)

    @overrides
    def get_params_internal(self, **tags):
        """Get parameter values."""
        return self._regressor.get_params_internal(**tags)
    def test_optimizer_args(self, mock_lbfgs):
        lbfgs_args = dict(max_opt_itr=25)
        gcr = GaussianCNNRegressorWithModel(input_shape=(10, 10, 3),
                                            num_filters=(3, 6),
                                            filter_dims=(3, 3),
                                            strides=(1, 1),
                                            padding='SAME',
                                            hidden_sizes=(32, ),
                                            output_dim=1,
                                            optimizer=LbfgsOptimizer,
                                            optimizer_args=lbfgs_args,
                                            use_trust_region=True)

        assert mock_lbfgs.return_value is gcr._optimizer

        mock_lbfgs.assert_called_with(max_opt_itr=25)
    def test_is_pickleable2(self):
        input_shape = (28, 28, 3)
        gcr = GaussianCNNRegressorWithModel(input_shape=input_shape,
                                            num_filters=(3, 6),
                                            filter_dims=(3, 3),
                                            strides=(1, 1),
                                            padding='SAME',
                                            hidden_sizes=(32, ),
                                            output_dim=1,
                                            adaptive_std=False,
                                            use_trust_region=False)

        with tf.compat.v1.variable_scope(
                'GaussianCNNRegressorWithModel/GaussianCNNRegressorModel',
                reuse=True):
            x_mean = tf.compat.v1.get_variable('normalized_vars/x_mean')
        x_mean.load(tf.ones_like(x_mean).eval())
        x1 = gcr.model.networks['default'].x_mean.eval()
        h = pickle.dumps(gcr)
        with tf.compat.v1.Session(graph=tf.Graph()):
            gcr_pickled = pickle.loads(h)
            x2 = gcr_pickled.model.networks['default'].x_mean.eval()
            assert np.array_equal(x1, x2)