def test_log_likelihood_sym(self, output_dim, input_shape):
        gmr = GaussianMLPRegressorWithModel(
            input_shape=input_shape,
            output_dim=output_dim,
            optimizer=PenaltyLbfgsOptimizer,
            optimizer_args=dict())

        new_input_var = tf.placeholder(
            tf.float32, shape=(None, ) + input_shape)
        new_ys_var = tf.placeholder(
            dtype=tf.float32, name='ys', shape=(None, output_dim))

        data = np.random.random(size=input_shape)
        label = np.ones(output_dim)

        outputs = gmr.log_likelihood_sym(
            new_input_var, new_ys_var, name='ll_sym')
        ll_from_sym = self.sess.run(
            outputs, feed_dict={
                new_input_var: [data],
                new_ys_var: [label]
            })
        mean, log_std = gmr._f_pdists([data])
        ll = gmr.model.networks['default'].dist.log_likelihood(
            [label], dict(mean=mean, log_std=log_std))
        assert np.allclose(ll, ll_from_sym, rtol=0, atol=1e-5)
    def __init__(
        self,
        env_spec,
        subsample_factor=1.,
        num_seq_inputs=1,
        regressor_args=None,
        name='GaussianMLPBaselineWithModel',
    ):
        """
        Gaussian MLP Baseline with Model.

        It fits the input data to a gaussian distribution estimated by
        a MLP.

        Args:
            env_spec (garage.envs.env_spec.EnvSpec): Environment specification.
            subsample_factor (float): The factor to subsample the data. By
                default it is 1.0, which means using all the data.
            num_seq_inputs (float): Number of sequence per input. By default
                it is 1.0, which means only one single sequence.
            regressor_args (dict): Arguments for regressor.
        """
        super().__init__(env_spec)
        if regressor_args is None:
            regressor_args = dict()

        self._regressor = GaussianMLPRegressorWithModel(
            input_shape=(env_spec.observation_space.flat_dim *
                         num_seq_inputs, ),
            output_dim=1,
            name=name,
            **regressor_args)
        self.name = name
Exemplo n.º 3
0
    def __init__(
        self,
        env_spec,
        subsample_factor=1.,
        num_seq_inputs=1,
        regressor_args=None,
        name='GaussianMLPBaselineWithModel',
    ):
        """
        Constructor.

        :param env_spec:
        :param subsample_factor:
        :param num_seq_inputs:
        :param regressor_args:
        """
        super().__init__(env_spec)
        if regressor_args is None:
            regressor_args = dict()

        self._regressor = GaussianMLPRegressorWithModel(
            input_shape=(env_spec.observation_space.flat_dim *
                         num_seq_inputs, ),
            output_dim=1,
            name=name,
            **regressor_args)
        self.name = name
    def test_is_pickleable2(self):
        gmr = GaussianMLPRegressorWithModel(input_shape=(1, ), output_dim=1)

        with tf.variable_scope(
                'GaussianMLPRegressorWithModel/GaussianMLPRegressorModel',
                reuse=True):
            x_mean = tf.get_variable('normalized_vars/x_mean')
        x_mean.load(tf.ones_like(x_mean).eval())
        x1 = gmr.model.networks['default'].x_mean.eval()
        h = pickle.dumps(gmr)
        with tf.Session(graph=tf.Graph()):
            gmr_pickled = pickle.loads(h)
            x2 = gmr_pickled.model.networks['default'].x_mean.eval()
            assert np.array_equal(x1, x2)
    def test_is_pickleable(self):
        gmr = GaussianMLPRegressorWithModel(input_shape=(1, ), output_dim=1)

        with tf.variable_scope(
                'GaussianMLPRegressorWithModel/GaussianMLPRegressorModel',
                reuse=True):
            bias = tf.get_variable('dist_params/mean_network/hidden_0/bias')
        bias.load(tf.ones_like(bias).eval())

        result1 = gmr.predict(np.ones((1, 1)))
        h = pickle.dumps(gmr)

        with tf.Session(graph=tf.Graph()):
            gmr_pickled = pickle.loads(h)
            result2 = gmr_pickled.predict(np.ones((1, 1)))
            assert np.array_equal(result1, result2)
    def test_fit_smaller_subsample_factor(self):
        gmr = GaussianMLPRegressorWithModel(
            input_shape=(1, ), output_dim=1, subsample_factor=0.9)
        data = np.linspace(-np.pi, np.pi, 1000)
        obs = [{'observations': [[x]], 'returns': [np.sin(x)]} for x in data]

        observations = np.concatenate([p['observations'] for p in obs])
        returns = np.concatenate([p['returns'] for p in obs])
        for _ in range(150):
            gmr.fit(observations, returns.reshape((-1, 1)))

        paths = {
            'observations': [[-np.pi], [-np.pi / 2], [-np.pi / 4], [0],
                             [np.pi / 4], [np.pi / 2], [np.pi]]
        }

        prediction = gmr.predict(paths['observations'])

        expected = [[0], [-1], [-0.707], [0], [0.707], [1], [0]]
        assert np.allclose(prediction, expected, rtol=0, atol=0.1)
    def test_fit_unnormalized(self):
        gmr = GaussianMLPRegressorWithModel(
            input_shape=(1, ),
            output_dim=1,
            subsample_factor=0.9,
            normalize_inputs=False,
            normalize_outputs=False)
        data = np.linspace(-np.pi, np.pi, 1000)
        obs = [{'observations': [[x]], 'returns': [np.sin(x)]} for x in data]

        observations = np.concatenate([p['observations'] for p in obs])
        returns = np.concatenate([p['returns'] for p in obs])
        for _ in range(150):
            gmr.fit(observations, returns.reshape((-1, 1)))

        paths = {
            'observations': [[-np.pi], [-np.pi / 2], [-np.pi / 4], [0],
                             [np.pi / 4], [np.pi / 2], [np.pi]]
        }

        prediction = gmr.predict(paths['observations'])

        expected = [[0], [-1], [-0.707], [0], [0.707], [1], [0]]
        assert np.allclose(prediction, expected, rtol=0, atol=0.1)

        x_mean = self.sess.run(gmr.model.networks['default'].x_mean)
        x_mean_expected = np.zeros_like(x_mean)
        x_std = self.sess.run(gmr.model.networks['default'].x_std)
        x_std_expected = np.ones_like(x_std)
        assert np.array_equal(x_mean, x_mean_expected)
        assert np.array_equal(x_std, x_std_expected)

        y_mean = self.sess.run(gmr.model.networks['default'].y_mean)
        y_mean_expected = np.zeros_like(y_mean)
        y_std = self.sess.run(gmr.model.networks['default'].y_std)
        y_std_expected = np.ones_like(y_std)

        assert np.allclose(y_mean, y_mean_expected)
        assert np.allclose(y_std, y_std_expected)
    def test_fit_normalized(self):
        gmr = GaussianMLPRegressorWithModel(input_shape=(1, ), output_dim=1)
        data = np.linspace(-np.pi, np.pi, 1000)
        obs = [{'observations': [[x]], 'returns': [np.sin(x)]} for x in data]

        observations = np.concatenate([p['observations'] for p in obs])
        returns = np.concatenate([p['returns'] for p in obs])
        returns = returns.reshape((-1, 1))
        for _ in range(150):
            gmr.fit(observations, returns)

        paths = {
            'observations': [[-np.pi], [-np.pi / 2], [-np.pi / 4], [0],
                             [np.pi / 4], [np.pi / 2], [np.pi]]
        }

        prediction = gmr.predict(paths['observations'])

        expected = [[0], [-1], [-0.707], [0], [0.707], [1], [0]]
        assert np.allclose(prediction, expected, rtol=0, atol=0.1)

        x_mean = self.sess.run(gmr.model.networks['default'].x_mean)
        x_mean_expected = np.mean(observations, axis=0, keepdims=True)
        x_std = self.sess.run(gmr.model.networks['default'].x_std)
        x_std_expected = np.std(observations, axis=0, keepdims=True)

        assert np.allclose(x_mean, x_mean_expected)
        assert np.allclose(x_std, x_std_expected)

        y_mean = self.sess.run(gmr.model.networks['default'].y_mean)
        y_mean_expected = np.mean(returns, axis=0, keepdims=True)
        y_std = self.sess.run(gmr.model.networks['default'].y_std)
        y_std_expected = np.std(returns, axis=0, keepdims=True)

        assert np.allclose(y_mean, y_mean_expected)
        assert np.allclose(y_std, y_std_expected)