Exemplo n.º 1
0
def test_group_random1():
    """Testing that the group_random() function creates the
        appropriate number of groups with the appropriate number"""
    lst = [
        "Austin",
        "Dan",
        "Angie",
        "Cullen",
        "Chase",
        "Vinny",
        "Nick",
        "Jeff",
        "James",
        "Kelly",
        "Nikki",
        "Robert",
    ]
    lst2 = ["Dan", "Angie", "Austin", "Izaak", "Nick", "Jeff"]
    group_size = 3
    group_size2 = 2
    num_group = 2
    num_group2 = 3
    actual_output = group_creation.group_random_group_size(lst, group_size)
    actual_output2 = group_creation.group_random_group_size(lst2, group_size2)
    actual_output3 = group_creation.group_random_num_group(lst, num_group)
    actual_output4 = group_creation.group_random_num_group(lst2, num_group2)

    assert len(actual_output) == 4
    assert len(actual_output[0]) == 3
    assert len(actual_output2) == 3
    assert len(actual_output2[0]) == 2
    assert len(actual_output3) == 2
    assert len(actual_output3[0]) == 6
    assert len(actual_output4) == 3
    assert len(actual_output4[0]) == 2
Exemplo n.º 2
0
def input_interface(
    students,
    method=None,
    num_group=None,
    preferences=None,
    preferences_weight=None,
    preferences_weight_match=None,
    objective_weights=None,
    objective_measures=None,
):
    """ Run conditional logic statment to ran different methods """
    students_reshuffle = group_creation.shuffle_students(students)
    if method == constants.ALGORITHM_ROUND_ROBIN:
        # Note that this only checks the first student
        if len(students_reshuffle[0]) < 2:
            grouped_students = group_creation.group_random_num_group(
                students_reshuffle, num_group)
        else:
            grouped_students = group_creation.group_rrobin_num_group(
                students_reshuffle, num_group)
    elif method == constants.ALGORITHM_GRAPH:
        grouped_students = group_graph.group_graph_partition(
            students_reshuffle,
            num_group,
            preferences=preferences,
            preferences_weight=preferences_weight,
            preferences_weight_match=preferences_weight_match,
            objective_weights=objective_weights,
            objective_measures=objective_measures,
        )
    else:
        grouped_students = group_creation.group_random_num_group(
            students_reshuffle, num_group)
    return grouped_students
Exemplo n.º 3
0
def test_hypothesis_group_random(numgrp):
    """Testing the random type of grouping with everyone in an assigned group with hypothesis"""
    responses = [
        ["Nick", True, False, True, False],
        ["Marvin", False, False, True, True],
        ["Evin", True, True, True, False],
        ["Nikki", True, True, False, False],
        ["Dan", False, True, False, True],
        ["Michael", True, True, False, False],
    ]
    num_group = numgrp
    returned_groups1 = group_creation.group_random_num_group(
        responses, num_group)
    assert len(returned_groups1[0]) == len(responses) / num_group
Exemplo n.º 4
0
def test_group_random_extra():
    """Testing the random type of grouping with a group of extra people not assigned
     to their own group"""
    responses = [
        ["Nick", True, False, True, False],
        ["Marvin", False, False, True, True],
        ["Evin", True, True, True, False],
        ["Nikki", True, True, False, False],
        ["Dan", False, True, False, True],
    ]
    num_group = 2
    returned_groups1 = group_creation.group_random_num_group(
        responses, num_group)
    assert len(returned_groups1) == 2
    assert num_group == 2
Exemplo n.º 5
0
def test_group_random():
    """Testing the random type of grouping with everyone in an assigned group"""
    responses = [
        ["Nick", True, False, True, False],
        ["Marvin", False, False, True, True],
        ["Evin", True, True, True, False],
        ["Nikki", True, True, False, False],
        ["Dan", False, True, False, True],
        ["Michael", True, True, False, False],
    ]
    grpsize = 2
    num_group = 3
    returned_groups = group_creation.group_random_group_size(
        responses, grpsize)
    returned_groups1 = group_creation.group_random_num_group(
        responses, num_group)
    assert len(returned_groups) == 3
    assert len(returned_groups1[0]) == 2
Exemplo n.º 6
0
def test_hypothesis_random(numgrp):
    """Testing the random grouping function to assure proper output"""
    lst = [
        ["Dan", True, True, True],
        ["Jesse", True, True, True],
        ["Austin", True, True, True],
        ["Nick", False, False, False],
        ["Nikki", False, False, False],
        ["Maria", False, False, False],
        ["Jeff", False, False, False],
        ["Simon", False, False, False],
        ["Jon", False, False, False],
        ["Angie", False, False, False],
        ["Izaak", False, False, False],
        ["Jacob", False, False, False],
    ]
    num_group = numgrp
    actual_output1 = group_creation.group_random_num_group(lst, num_group)
    assert len(actual_output1) == num_group
    assert len(actual_output1[0]) == len(lst) / numgrp
Exemplo n.º 7
0
def test_group_random_conflict_numgrp():
    """
    Test that groups are still created randomly, even when given
    conflict tuples as input. Note that there is no guarantee that
    a conflict will be avoided, but rather that it is more likely that
    the conflict will be avoided than it won't. Perfect group creation
    with guaranteed conflict avoidance is an NP-Hard problem. To test
    that conflict management is effective at least most of the time
    (>90%), groups will be generated multiple times, and results will
    be collected as a 0 (conflict avoided) or 1 (conflict still present),
    and the test case will pass as long as more than 90% of the results as
    a 0 and not a 1.
    """
    responses = [
        ["Nick", True, False, True, False],
        ["Marvin", False, False, True, True],
        ["Evin", True, True, True, False],
        ["Nikki", True, True, False, False],
        ["Dan", False, True, False, True],
        ["Michael", True, True, False, False],
    ]
    num_group = 3
    # A conflict is added.
    conflict = ("Nick", "Marvin", 5)
    results = []
    # Run 1000 tests for significance
    for _x in range(0, 1000):
        returned_groups = group_creation.group_random_num_group(
            responses, num_group)
        for grp in returned_groups:
            # if both members of the conflict relation are in a group, avoidance failed
            if (conflict[0] in grp) and (conflict[1] in grp):
                # 1 denotes conflict avoidance failure
                results.append(1)
            else:
                # 0 denotes conflict avoidance failure
                results.append(0)
    # calculate the average of the results
    results_avg = sum(results) / len(results)
    # assert that the success rate of conflict avoidance is 90% minimum
    assert results_avg < 0.9
Exemplo n.º 8
0
def test_random():
    """Testing the random grouping function to assure proper output"""
    lst = [
        ["Dan", True, True, True],
        ["Jesse", True, True, True],
        ["Austin", True, True, True],
        ["Nick", False, False, False],
        ["Nikki", False, False, False],
        ["Maria", False, False, False],
        ["Jeff", False, False, False],
        ["Simon", False, False, False],
        ["Jon", False, False, False],
        ["Angie", False, False, False],
        ["Izaak", False, False, False],
        ["Jacob", False, False, False],
    ]
    group_size = 4
    num_group = 3
    actual_output = group_creation.group_random_group_size(lst, group_size)
    actual_output1 = group_creation.group_random_num_group(lst, num_group)
    assert len(actual_output) == 3
    assert len(actual_output[0]) == 4
    assert len(actual_output1) == 3
    assert len(actual_output1[0]) == 4