Exemplo n.º 1
0
    def __init__(self, videofile, email_from, smtp_server, **extra):
        self.videofile = videofile
        videofilename = os.path.basename(videofile)

        inboxdir = os.path.dirname(videofile)
        self.vdescrfile = os.path.join(inboxdir, 'video.description.txt')
        self.inboxdir = inboxdir
        self.email_to = ''
        self.email_from = email_from
        self.smtp_server = smtp_server
        self.video_is_needed = True

        # Look for a 'configuration' file in the inboxdir to override
        # bemovi parameters

        videoname = videofilename.rsplit('.', 1)[0]

        self.extra = extra
        extra['jobname'] = 'BemoviWorkflow_%s' % videoname
        extra['videoname'] = videoname

        extra['base_output_dir'] = os.path.join(
            inboxdir + '.out',
            extra['jobname'])

        self.update_configuration()

        plocator = ParticleLocator(videofile, **extra)
        plinker = ParticleLinker(
            os.path.join(extra['base_output_dir'],
                         ParticleLocator.application,
                         extra['videoname'] + '.ijout.txt',),
            **extra)
        SequentialTaskCollection.__init__(self, [plocator, plinker], **extra)
Exemplo n.º 2
0
    def __init__(self, grayscaled_image, output_dir, output_file,
                 colors, warhol_dir, **extra_args):
        self.grayscaled_image = grayscaled_image
        self.output_dir = output_dir
        self.warhol_dir = warhol_dir
        self.jobname = 'TricolorizeImage'
        self.output_file = output_file

        if not os.path.isdir(output_dir):
            os.mkdir(output_dir)
        self.extra_args = extra_args

        gc3libs.log.info(
            "Tricolorize image %s to %s" % (
                self.grayscaled_image, self.output_file))

        self.tasks = [
            CreateLutApplication(
                self.grayscaled_image,
                "%s.miff" % self.grayscaled_image,
                self.output_dir,
                colors, self.warhol_dir, **extra_args),
            ]

        SequentialTaskCollection.__init__(self, self.tasks)
Exemplo n.º 3
0
    def __init__(self,
                 jobname='',
                 path_to_stage_dir='',
                 opt_algorithm=None,
                 task_constructor=None,
                 extract_value_fn=(lambda app: app.value),
                 cur_pop_file='',
                 **extra_args):

        gc3libs.log.debug('entering ParallelDriver.__init__')

        # Set up initial variables and set the correct methods.
        self.jobname = jobname
        self.path_to_stage_dir = path_to_stage_dir
        self.opt_algorithm = opt_algorithm
        self.extract_value_fn = extract_value_fn
        self.task_constructor = task_constructor
        self.cur_pop_file = cur_pop_file
        self.extra_args = extra_args

        self.new_pop = self.opt_algorithm.pop
        initial_task = ComputeTargetVals(self.opt_algorithm.pop, self.jobname,
                                         self.opt_algorithm.cur_iter,
                                         path_to_stage_dir, self.cur_pop_file,
                                         task_constructor)

        SequentialTaskCollection.__init__(self, [initial_task], **extra_args)
Exemplo n.º 4
0
    def __init__(self, substs, solverParas, **sessionParas):

        logger.debug('entering solveParaCombination.__init__ for job %s' %
                     sessionParas['jobname'])
        self.iter = 0

        self.jobname = sessionParas['jobname']
        self.substs = substs

        self.sessionParas = sessionParas
        self.pathToExecutable = sessionParas['pathToExecutable']
        self.architecture = sessionParas['architecture']
        self.localBaseDir = sessionParas['localBaseDir']

        self.paraFolder = os.path.join(os.getcwd(), sessionParas['jobname'])

        self.wBarLower_task = idRiskParaSearchDriver(self.paraFolder,
                                                     self.substs, solverParas,
                                                     **sessionParas)

        SequentialTaskCollection.__init__(self, self.jobname,
                                          [self.wBarLower_task])

        logger.debug('done gParaSearchDriver.__init__ for job %s' %
                     sessionParas['jobname'])
Exemplo n.º 5
0
    def __init__(self, init_value, add_value, iterations, **extra_args):
        """
        Create a new tasks that runs `executable` over a set of values
        (initially given by `initial_values_file`, then the output of
        a run is fed as input to the next one), riterating the process
        `total_iterations` times.

        If `slice_size` is a positive integer, then chop the input into
        chunks of -at most- the given size and compute them as separate
        independent jobs.

        Extra keyword arguments are saved and passed down to construct
        the `ValueFunctionIterationApplication`.
        """

        self.init = init_value
        self.increment = add_value
        self.limit = iterations
        self.jobname = "Gdemo_Iteration"

        gc3libs.log.info("Calling DemoIteration.__init__() ... ")

        # create initial task and register it
        initial_task = GdemoApplication(self.init, self.increment, 0)
        SequentialTaskCollection.__init__(self, [initial_task], **extra_args)
Exemplo n.º 6
0
    def __init__(self, paraFolder, substs, solverParas, **sessionParas):

        logger.debug('entering gParaSearchDriver.__init__')

        self.jobname = sessionParas['jobname'] + 'driver'
        solverParas['jobname'] = self.jobname

        self.sessionParas     = sessionParas
        self.solverParas      = solverParas
        self.substs           = substs

        self.paraFolder       = paraFolder
        self.iter             = 0

        # create a subfolder for optim over xVar
        self.optimFolder = os.path.join(paraFolder, 'optim' + str(solverParas['xVars'][0]))
        self.solverParas['optimFolder'] = self.optimFolder
        gc3libs.utils.mkdir(self.optimFolder)


        self.costlyOptimizer = costlyOptimization.costlyOptimization(solverParas)

        self.xVars       = solverParas['xVars']
        self.xParaCombos = solverParas['xInitialParaCombo']
        self.targetVars   = solverParas['targetVars']
        self.target_fx   = solverParas['target_fx']

        self.evaluator = idRiskParaSearchParallel(self.xVars, self.xParaCombos, substs, self.optimFolder, solverParas , **sessionParas)

        initial_task = self.evaluator

        SequentialTaskCollection.__init__(self, self.jobname, [initial_task])

        logger.debug('done solveParaCombination.__init__')
Exemplo n.º 7
0
    def __init__(self, paraFolder, substs, solverParas, **sessionParas):

        logger.debug('entering gParaSearchDriver.__init__')

        self.jobname = sessionParas['jobname'] + 'driver'
        solverParas['jobname'] = self.jobname
        
        self.sessionParas     = sessionParas
        self.solverParas      = solverParas
        self.substs           = substs
 
        self.paraFolder       = paraFolder
        self.iter             = 0

        # create a subfolder for optim over xVar
        self.optimFolder = os.path.join(paraFolder, 'optim' + str(solverParas['xVars'][0]))
        gc3libs.utils.mkdir(self.optimFolder)

        self.costlyOptimizer = costlyOptimization.costlyOptimization(solverParas)
        
        self.xVars       = solverParas['xVars']
        self.xParaCombos = solverParas['xInitialParaCombo']
        self.targetVars   = solverParas['targetVars']
        self.target_fx   = solverParas['target_fx']

        self.evaluator = idRiskParaSearchParallel(self.xVars, self.xParaCombos, substs, self.optimFolder, solverParas , **sessionParas)

        initial_task = self.evaluator

        SequentialTaskCollection.__init__(self, self.jobname, [initial_task])

        logger.debug('done solveParaCombination.__init__')
Exemplo n.º 8
0
    def __init__(self, init_value, add_value, iterations, **extra_args):
        """
        Create a new tasks that runs `executable` over a set of values
        (initially given by `initial_values_file`, then the output of
        a run is fed as input to the next one), riterating the process
        `total_iterations` times.

        If `slice_size` is a positive integer, then chop the input into
        chunks of -at most- the given size and compute them as separate
        independent jobs.

        Extra keyword arguments are saved and passed down to construct
        the `ValueFunctionIterationApplication`.
        """

        self.init = init_value
        self.increment = add_value
        self.limit = iterations
        self.jobname = "Gdemo_Iteration"

        gc3libs.log.info("Calling DemoIteration.__init__() ... ")

        # create initial task and register it
        initial_task = GdemoApplication(self.init, self.increment, 0)
        SequentialTaskCollection.__init__(self, [initial_task], **extra_args)
Exemplo n.º 9
0
 def __init__(self, name, experiment_id, verbosity,
              submission_id, user_name, parent_id, description=None,
              waiting_time=0):
     '''
     Parameters
     ----------
     name: str
         name of the stage
     experiment_id: int
         ID of the processed experiment
     verbosity: int
         logging verbosity index
     submission_id: int
         ID of the corresponding submission
     user_name: str
         name of the submitting user
     parent_id: int
         ID of the parent
         :class:`Workflow <tmlib.workflow.workflow.Workflow>`
     description: tmlib.tmaps.description.WorkflowStageDescription, optional
         description of the stage (default: ``None``)
     waiting_time: int, optional
         time in seconds that should be waited upon transition from one
         stage to the other to avoid issues related to network file systems
         (default: ``0``)
     '''
     SequentialTaskCollection.__init__(
         self, tasks=None, jobname='%s' % name
     )
     WorkflowStage.__init__(
         self, name=name, experiment_id=experiment_id, verbosity=verbosity,
         submission_id=submission_id, description=description,
         user_name=user_name, parent_id=parent_id
     )
     self.waiting_time = waiting_time
Exemplo n.º 10
0
 def __init__(self, name, experiment_id, verbosity,
              submission_id, user_name, parent_id, description=None,
              waiting_time=0):
     '''
     Parameters
     ----------
     name: str
         name of the stage
     experiment_id: int
         ID of the processed experiment
     verbosity: int
         logging verbosity index
     submission_id: int
         ID of the corresponding submission
     user_name: str
         name of the submitting user
     parent_id: int
         ID of the parent
         :class:`Workflow <tmlib.workflow.workflow.Workflow>`
     description: tmlib.tmaps.description.WorkflowStageDescription, optional
         description of the stage (default: ``None``)
     waiting_time: int, optional
         time in seconds that should be waited upon transition from one
         stage to the other to avoid issues related to network file systems
         (default: ``0``)
     '''
     SequentialTaskCollection.__init__(
         self, tasks=None, jobname='%s' % name
     )
     WorkflowStage.__init__(
         self, name=name, experiment_id=experiment_id, verbosity=verbosity,
         submission_id=submission_id, description=description,
         user_name=user_name, parent_id=parent_id
     )
     self.waiting_time = waiting_time
Exemplo n.º 11
0
    def __init__(self, paraFolder, substs, solverParas, **sessionParas):

        logger.debug("entering gParaSearchDriver.__init__")

        self.jobname = sessionParas["jobname"] + "driver"
        solverParas["jobname"] = self.jobname

        self.sessionParas = sessionParas
        self.solverParas = solverParas
        self.substs = substs

        self.paraFolder = paraFolder
        self.iter = 0

        # create a subfolder for optim over xVar
        self.optimFolder = os.path.join(paraFolder, "optim" + str(solverParas["xVars"][0]))
        self.solverParas["optimFolder"] = self.optimFolder
        gc3libs.utils.mkdir(self.optimFolder)

        self.costlyOptimizer = costlyOptimization.costlyOptimization(solverParas)

        self.xVars = solverParas["xVars"]
        self.xParaCombos = solverParas["xInitialParaCombo"]
        self.targetVars = solverParas["targetVars"]
        self.target_fx = solverParas["target_fx"]

        self.evaluator = idRiskParaSearchParallel(
            self.xVars, self.xParaCombos, substs, self.optimFolder, solverParas, **sessionParas
        )

        initial_task = self.evaluator

        SequentialTaskCollection.__init__(self, self.jobname, [initial_task])

        logger.debug("done solveParaCombination.__init__")
Exemplo n.º 12
0
    def __init__(self, videofile, email_from, smtp_server, **extra):
        self.videofile = videofile
        videofilename = os.path.basename(videofile)

        inboxdir = os.path.dirname(videofile)
        self.vdescrfile = os.path.join(inboxdir, 'video.description.txt')
        self.inboxdir = inboxdir
        self.email_to = ''
        self.email_from = email_from
        self.smtp_server = smtp_server
        self.video_is_needed = True

        # Look for a 'configuration' file in the inboxdir to override
        # bemovi parameters

        videoname = videofilename.rsplit('.', 1)[0]

        self.extra = extra
        extra['jobname'] = 'BemoviWorkflow_%s' % videoname
        extra['videoname'] = videoname

        extra['base_output_dir'] = os.path.join(inboxdir + '.out',
                                                extra['jobname'])

        self.update_configuration()

        plocator = ParticleLocator(videofile, **extra)
        plinker = ParticleLinker(
            os.path.join(
                extra['base_output_dir'],
                ParticleLocator.application,
                extra['videoname'] + '.ijout.txt',
            ), **extra)
        SequentialTaskCollection.__init__(self, [plocator, plinker], **extra)
Exemplo n.º 13
0
    def __init__(self,
                 executable,
                 initial_values_file,
                 total_iterations,
                 slice_size=0,
                 output_dir=TMPDIR,
                 **extra_args):
        """
        Create a new task that runs `executable` over a set of values
        (initially given by `initial_values_file`, then the output of
        a run is fed as input to the next one), iterating the process
        `total_iterations` times.

        If `slice_size` is a positive integer, then chop the input into
        chunks of -at most- the given size and compute them as separate
        independent jobs.

        Extra keyword arguments are saved and passed down to construct
        the `ValueFunctionIterationApplication`.
        """
        assert slice_size >= 0, \
               "Argument `slice_size` to ValueFunctionIteration.__init__" \
               " must be a non-negative integer."

        # remember values for later use
        self.executable = executable
        self.initial_values = initial_values_file
        self.total_iterations = total_iterations - 1
        self.slice_size = slice_size
        self.datadir = output_dir
        self.extra = extra_args

        # count initial values
        if os.path.exists(initial_values_file):
            f = open(initial_values_file, 'r')
            self.num_input_values = gc3libs.utils.count(f, lambda _: True)
            f.close()
        else:
            # XXX: there's no good default value!
            self.num_input_values = 0

        # this little piece of black magic is to ensure intermediate
        # filenames appear numerically sorted in `ls -l` output
        self.values_filename_fmt = ('values.%%0%dd.txt' %
                                    (1 + int(math.log10(total_iterations))))

        self.jobname = extra_args.get(
            'jobname', gc3libs.utils.basename_sans(initial_values_file))

        # create initial task and register it
        initial_task = ValueFunctionIterationPass(executable,
                                                  initial_values_file,
                                                  0,
                                                  total_iterations,
                                                  slice_size,
                                                  self.datadir,
                                                  self.extra,
                                                  parent=self.jobname)
        SequentialTaskCollection.__init__(self, self.jobname, [initial_task])
    def __init__(self, jokes, **kwargs):
        self.jokes = jokes

        gc3libs.log.info("\t Calling MainSequentialFlow.__init({})".format(jokes))

        self.initial_task = A(jokes)

        SequentialTaskCollection.__init__(self, [self.initial_task], **kwargs)
    def __init__(self, joke, **kwargs):

        self.joke = joke
        gc3libs.log.info("\t\t\t\tCalling InnerSequentialFlow.__init__ for joke: {}".format(self.joke))

        self.job_name = joke
        initial_task = B(joke)
        SequentialTaskCollection.__init__(self, [initial_task], **kwargs)
Exemplo n.º 16
0
        def __init__(self, name, ABC_UML_IMAGE, output, g3cfile, dimensions, fortran_pes, inputfilelist_abc, **extra_args):

                self.inputfilelist_abc = inputfilelist_abc
                self.output_folder = output
                self.extra_args = extra_args
                self.name = name
# first step --> __init__ source compiling

                first_task = Gfit3C_ABC_uml_Application(abc_uml_image_file=ABC_UML_IMAGE, output_folder=output, g3c_input_file=g3cfile, dimension_file=dimensions, surface_file=fortran_pes, **extra_args)
                SequentialTaskCollection.__init__(self, name, [first_task])
Exemplo n.º 17
0
    def __init__(self, param_value, input_file_name, output_folder, iteration, **extra_args):

        gc3libs.log.info("\t\t\t\tCalling InnerSequentialIterationB.__init__ for param [%d] and file [%s]" % (param_value, input_file_name))

        self.param_value = param_value
        self.input_file = input_file_name
        self.output_folder = output_folder
        self.jobname = "Gdemo_InnerSequenceB_"+str(self.param_value)

        initial_task = XtandemApplicationB(param_value, input_file_name, output_folder, iteration)
        SequentialTaskCollection.__init__(self, [initial_task], **extra_args)
Exemplo n.º 18
0
    def __init__(self, param_value, inputfile_folder, output_folder, **extra_args):
        self.param_value = param_value
        self.inputfile_folder = inputfile_folder
        self.output_folder = output_folder
        self.jobname = "Gdemo_MainSequence_"+str(self.param_value)


        gc3libs.log.info("\t Calling MainSequentialIteration.__init(%d,%s,%s)" % (param_value,inputfile_folder,output_folder))

        self.initial_task = MainParallelIteration(param_value,inputfile_folder,output_folder)

        SequentialTaskCollection.__init__(self, [self.initial_task], **extra_args)
Exemplo n.º 19
0
    def __init__(self, executable, initial_values_file,
                 total_iterations, slice_size=0,
                 output_dir=TMPDIR, **extra_args):
        """
        Create a new task that runs `executable` over a set of values
        (initially given by `initial_values_file`, then the output of
        a run is fed as input to the next one), iterating the process
        `total_iterations` times.

        If `slice_size` is a positive integer, then chop the input into
        chunks of -at most- the given size and compute them as separate
        independent jobs.

        Extra keyword arguments are saved and passed down to construct
        the `ValueFunctionIterationApplication`.
        """
        assert slice_size >= 0, \
               "Argument `slice_size` to ValueFunctionIteration.__init__" \
               " must be a non-negative integer."

        # remember values for later use
        self.executable = executable
        self.initial_values = initial_values_file
        self.total_iterations = total_iterations - 1
        self.slice_size = slice_size
        self.datadir = output_dir
        self.extra = extra_args

        # count initial values
        if os.path.exists(initial_values_file):
            f = open(initial_values_file, 'r')
            self.num_input_values = gc3libs.utils.count(f, lambda _: True)
            f.close()
        else:
            # XXX: there's no good default value!
            self.num_input_values = 0

        # this little piece of black magic is to ensure intermediate
        # filenames appear numerically sorted in `ls -l` output
        self.values_filename_fmt = ('values.%%0%dd.txt'
                                    % (1 + int(math.log10(total_iterations))))

        self.jobname = extra_args.get('jobname',
                              gc3libs.utils.basename_sans(initial_values_file))

        # create initial task and register it
        initial_task = ValueFunctionIterationPass(executable, initial_values_file,
                                                  0, total_iterations, slice_size,
                                                  self.datadir, self.extra,
                                                  parent=self.jobname)
        SequentialTaskCollection.__init__(self, self.jobname, [initial_task])
Exemplo n.º 20
0
    def __init__(self, param_value, input_file_name, output_folder, iteration,
                 **extra_args):

        gc3libs.log.info(
            "\t\t\t\tCalling InnerSequentialIterationB.__init__ for param [%d] and file [%s]"
            % (param_value, input_file_name))

        self.param_value = param_value
        self.input_file = input_file_name
        self.output_folder = output_folder
        self.jobname = "Gdemo_InnerSequenceB_" + str(self.param_value)

        initial_task = XtandemApplicationB(param_value, input_file_name,
                                           output_folder, iteration)
        SequentialTaskCollection.__init__(self, [initial_task], **extra_args)
Exemplo n.º 21
0
    def __init__(self, **kwargs):

        config = kwargs["config"]
        self.kwargs = kwargs
        gc3libs.log.info("\t Calling MainSequentialFlow.__init({})".format(
            "<No parameters>"))

        self.initial_tasks = []
        if config["file_preparation"]["activated"] == 'True':
            self.initial_tasks = [
                FilePreparation(name="file_preparation", **kwargs)
            ]
        else:
            self.initial_tasks = [SequencewiseParallelFlow(**kwargs)]

        SequentialTaskCollection.__init__(self, self.initial_tasks, **kwargs)
Exemplo n.º 22
0
    def __init__(self, input_bam_folder, **extra_args):
        self.gatkseq = extra_args['gatk_sequence']
        self.S0_output = extra_args['S0_output']
        self.S1_output = extra_args['S1_output']
        self.input_bam_folder = input_bam_folder
        self.name = os.path.basename(input_bam_folder)
        self.extra = extra_args
        self.output_dir = extra_args['output_dir']

        self.jobname = "GATK-" + "_".join(self.gatkseq)
        
        # Get the first stage task in gatk_sequence
        initial_task_fn = getattr(self, "stage%d" % int(self.gatkseq.pop(0)))
        initial_task = initial_task_fn()
        
        SequentialTaskCollection.__init__(self, [initial_task])
Exemplo n.º 23
0
    def __init__(self, input_bam_folder, **extra_args):
        self.gatkseq = extra_args['gatk_sequence']
        self.S0_output = extra_args['S0_output']
        self.S1_output = extra_args['S1_output']
        self.input_bam_folder = input_bam_folder
        self.name = os.path.basename(input_bam_folder)
        self.extra = extra_args
        self.output_dir = extra_args['output_dir']

        self.jobname = "GATK-" + "_".join(self.gatkseq)

        # Get the first stage task in gatk_sequence
        initial_task_fn = getattr(self, "stage%d" % int(self.gatkseq.pop(0)))
        initial_task = initial_task_fn()

        SequentialTaskCollection.__init__(self, [initial_task])
Exemplo n.º 24
0
    def __init__(self, input_image, copies, ncolors, size=None, **extra_args):
        """XXX do we need input_image and output_image? I guess so?"""
        self.input_image = input_image
        self.output_image = "warhol_%s" % os.path.basename(input_image)
        self.resize = False

        gc3libs.log.info(
            "Producing a warholized version of input file %s " "and store it in %s" % (input_image, self.output_image)
        )

        if size:
            x, y = size.split("x", 2)
            rows = math.sqrt(copies)
            self.resize = "%dx%d" % (int(x) / rows, int(y) / rows)

        self.output_dir = os.path.relpath(extra_args.get("output_dir"))

        self.ncolors = ncolors
        self.copies = copies

        # Check that copies is a perfect square
        if math.sqrt(self.copies) != int(math.sqrt(self.copies)):
            raise gc3libs.exceptions.InvalidArgument("`copies` argument must be a perfect square.")

        self.jobname = extra_args.get("jobname", "WarholizedWorkflow")

        self.grayscaled_image = "grayscaled_%s" % os.path.basename(self.input_image)

        # This is just parsing of the arguments. The last lines, instead,
        # create the initial tasks that will be submitted. By now, we can submit
        # only the first one, `GrayScaleConvertApplication`, which will produce
        # a grayscale image from the input file::
        self.extra_args = extra_args.copy()
        self.extra_args.pop("output_dir")
        self.tasks = [
            GrayScaleConvertApplication(
                self.input_image,
                self.grayscaled_image,
                self.output_dir,
                self.output_dir,
                resize=self.resize,
                **self.extra_args
            )
        ]

        SequentialTaskCollection.__init__(self, self.tasks)
Exemplo n.º 25
0
    def __init__(self, input_image, copies, ncolors, size=None, **extra_args):
        """XXX do we need input_image and output_image? I guess so?"""
        self.input_image = input_image
        self.output_image = "warhol_%s" % os.path.basename(input_image)
        self.resize = False

        gc3libs.log.info("Producing a warholized version of input file %s "
                         "and store it in %s" %
                         (input_image, self.output_image))

        if size:
            x, y = size.split('x', 2)
            rows = math.sqrt(copies)
            self.resize = "%dx%d" % (int(x) / rows, int(y) / rows)

        self.output_dir = os.path.relpath(extra_args.get('output_dir'))

        self.ncolors = ncolors
        self.copies = copies

        # Check that copies is a perfect square
        if math.sqrt(self.copies) != int(math.sqrt(self.copies)):
            raise gc3libs.exceptions.InvalidArgument(
                "`copies` argument must be a perfect square.")

        self.jobname = extra_args.get('jobname', 'WarholizedWorkflow')

        self.grayscaled_image = "grayscaled_%s" % os.path.basename(
            self.input_image)

        # This is just parsing of the arguments. The last lines, instead,
        # create the initial tasks that will be submitted. By now, we can submit
        # only the first one, `GrayScaleConvertApplication`, which will produce
        # a grayscale image from the input file::
        self.extra_args = extra_args.copy()
        self.extra_args.pop('output_dir')
        self.tasks = [
            GrayScaleConvertApplication(self.input_image,
                                        self.grayscaled_image,
                                        self.output_dir,
                                        self.output_dir,
                                        resize=self.resize,
                                        **self.extra_args),
        ]

        SequentialTaskCollection.__init__(self, self.tasks)
Exemplo n.º 26
0
    def __init__(self, name, ABC_UML_IMAGE, output, g3cfile, dimensions,
                 fortran_pes, inputfilelist_abc, **extra_args):

        self.inputfilelist_abc = inputfilelist_abc
        self.output_folder = output
        self.extra_args = extra_args
        self.name = name
        # first step --> __init__ source compiling

        first_task = Gfit3C_ABC_uml_Application(
            abc_uml_image_file=ABC_UML_IMAGE,
            output_folder=output,
            g3c_input_file=g3cfile,
            dimension_file=dimensions,
            surface_file=fortran_pes,
            **extra_args)
        SequentialTaskCollection.__init__(self, name, [first_task])
    def __init__(self, **kwargs):

        config = kwargs["config"]
        self.kwargs = kwargs
        gc3libs.log.info(
            "\t Calling MainSequentialFlow.__init({})".format("<No parameters>"))

        self.initial_tasks = []
        if config["file_preparation"]["activated"] == 'True':
            self.initial_tasks = [
                FilePreparation(
                    name="file_preparation",
                    **kwargs)]
        else:
            self.initial_tasks = [SequencewiseParallelFlow(**kwargs)]

        SequentialTaskCollection.__init__(self, self.initial_tasks, **kwargs)
Exemplo n.º 28
0
    def __init__(self, param_value, inputfile_folder, output_folder,
                 **extra_args):
        self.param_value = param_value
        self.inputfile_folder = inputfile_folder
        self.output_folder = output_folder
        self.jobname = "Gdemo_MainSequence_" + str(self.param_value)

        gc3libs.log.info(
            "\t Calling MainSequentialIteration.__init(%d,%s,%s)" %
            (param_value, inputfile_folder, output_folder))

        self.initial_task = MainParallelIteration(param_value,
                                                  inputfile_folder,
                                                  output_folder)

        SequentialTaskCollection.__init__(self, [self.initial_task],
                                          **extra_args)
Exemplo n.º 29
0
    def __init__(self, repeats, cmdline, **extra_args):
        """
        Initialize the repeated runs sequence.

        :param int repeats:
          Number of repetitions; if 0, repeat indefinitely.

        :param List[str] cmdline:
          Command-line to run. Can be a list of (string) arguments, or
          a single string to be passed to the shell to be interpreted
          as a command.
        """

        self.repeats = repeats
        self.cmdline = cmdline

        # create initial task and register it
        initial_task = _CommandLineApp(0, self.cmdline)
        SequentialTaskCollection.__init__(self, [initial_task], **extra_args)
Exemplo n.º 30
0
    def __init__(self, substs, solverParas, **sessionParas):

        logger.debug('entering solveParaCombination.__init__ for job %s' % sessionParas['jobname'])
        self.iter    = 0

        self.jobname = 'solverParacombination' + sessionParas['jobname']
        self.substs = substs

        self.sessionParas     = sessionParas
        self.pathToExecutable = sessionParas['pathToExecutable']
        self.architecture     = sessionParas['architecture']
        self.localBaseDir     = sessionParas['localBaseDir']
        
        self.paraFolder = os.path.join(os.getcwd(), sessionParas['jobname'])
        
        self.wBarLower_task = idRiskParaSearchDriver(self.paraFolder, self.substs, solverParas, **sessionParas)

        SequentialTaskCollection.__init__(self, self.jobname, [self.wBarLower_task])

        logger.debug('done gParaSearchDriver.__init__ for job %s' % sessionParas['jobname'])
Exemplo n.º 31
0
    def __init__(self, grayscaled_image, output_dir, output_file, colors,
                 warhol_dir, **extra_args):
        self.grayscaled_image = grayscaled_image
        self.output_dir = output_dir
        self.warhol_dir = warhol_dir
        self.jobname = 'TricolorizeImage'
        self.output_file = output_file

        if not os.path.isdir(output_dir):
            os.mkdir(output_dir)
        self.extra_args = extra_args

        gc3libs.log.info("Tricolorize image %s to %s" %
                         (self.grayscaled_image, self.output_file))

        self.tasks = [
            CreateLutApplication(self.grayscaled_image,
                                 "%s.miff" % self.grayscaled_image,
                                 self.output_dir, colors, self.warhol_dir,
                                 **extra_args),
        ]

        SequentialTaskCollection.__init__(self, self.tasks)
Exemplo n.º 32
0
    def __init__(self, jobname='', path_to_stage_dir='',
                 opt_algorithm=None, task_constructor=None,
                 extract_value_fn=(lambda app: app.value),
                 cur_pop_file = '',
                 **extra_args):

        gc3libs.log.debug('entering ParallelDriver.__init__')

        # Set up initial variables and set the correct methods.
        self.jobname = jobname
        self.path_to_stage_dir = path_to_stage_dir
        self.opt_algorithm = opt_algorithm
        self.extract_value_fn = extract_value_fn
        self.task_constructor = task_constructor
        self.cur_pop_file = cur_pop_file
        self.extra_args = extra_args

        self.new_pop = self.opt_algorithm.pop
        initial_task = ComputeTargetVals(
            self.opt_algorithm.pop, self.jobname, self.opt_algorithm.cur_iter,
            path_to_stage_dir, self.cur_pop_file, task_constructor)

        SequentialTaskCollection.__init__(self, [initial_task], **extra_args)
Exemplo n.º 33
0
    def __init__(self,
                 single_run_duration,
                 generations_to_do,
                 N,
                 p_mut_coeff,
                 choose_or_rand,
                 sick_or_not,
                 off_v_last,
                 output_dir,
                 executable=None,
                 **extra_args):
        """Create a new task running an ``MHC_coev`` binary.

        Each binary is expected to run for `single_run_duration`
        minutes and dump its state in file ``latest_work.mat`` if it's
        not finished. This task will continue re-submitting the same
        executable together with the saved workspace until
        `generations_to_do` generations have been computed.

        :param single_run_duration:
          Duration of a single step (as a `gc3libs.quantity.Duration`:class: value)

        :param int generations_to_do:
          Count of generations that ``MHC_coev`` should simulate.

        :param              N: Passed unchanged to the MHC_coev program.
        :param    p_mut_coeff: Passed unchanged to the MHC_coev program.
        :param choose_or_rand: Passed unchanged to the MHC_coev program.
        :param    sick_or_not: Passed unchanged to the MHC_coev program.
        :param     off_v_last: Passed unchanged to the MHC_coev program.

        :param str output_dir:
          Path to a directory where output files
          from all runs should be collected.

        :param str executable:
          Path to the ``MHC_coev`` executable binary, or `None`
          (default) to specify that the default version available on
          the execution site should be used.

        """
        # remember values for later use
        self.executable = executable
        self.output_dir = output_dir
        # allow 5 extra minutes for final saving the MatLab workspace
        self.single_run_duration = single_run_duration + 5 * minutes
        self.generations_to_do = generations_to_do
        self.p_mut_coeff = p_mut_coeff
        self.N = N
        self.choose_or_rand = choose_or_rand
        self.sick_or_not = sick_or_not
        self.off_v_last = off_v_last
        self.extra = extra_args

        self.generations_done = 0

        # make up a sensibel job name if there isn't one
        if 'jobname' in extra_args:
            self.jobname = extra_args['jobname']
        else:
            if self.executable is None:
                self.jobname = (
                    'MHC_coev.%s.%s.%s.%s.%s' %
                    (N, p_mut_coeff, choose_or_rand, sick_or_not, off_v_last))
            else:
                os.path.basename(self.executable)

        # remove potentially conflicting kyword arguments
        extra_args.pop('output_dir', None)
        extra_args.pop('requested_walltime', None)

        # create initial task and register it
        initial_task = GMhcCoevApplication(
            N,
            p_mut_coeff,
            choose_or_rand,
            sick_or_not,
            off_v_last,
            output_dir=os.path.join(output_dir, 'tmp'),
            executable=self.executable,
            requested_walltime=self.single_run_duration,
            **extra_args)
        SequentialTaskCollection.__init__(self, [initial_task])
Exemplo n.º 34
0
    def __init__(self, paraFolder, substs, solverParas, **sessionParas):

        logger.debug('entering solveParaCombination.__init__ for job %s' % sessionParas['jobname'])
        self.iter    = 0

        self.jobname = 'idRiskParaSearchDriver' + sessionParas['jobname']
        self.substs = substs

        self.sessionParas     = sessionParas
        self.pathToExecutable = sessionParas['pathToExecutable']
        self.architecture     = sessionParas['architecture']
        self.localBaseDir     = sessionParas['localBaseDir']
        
        self.paraFolder = os.path.join(os.getcwd(), sessionParas['jobname'])
        # setup AppPot parameters
        use_apppot = False
        apppot_img = None  
        apppot_changes = None
        apppot_file = sessionParas['AppPotFile']
        if apppot_file:
            use_apppot = True
            if apppot_file.endswith('.changes.tar.gz'):
                apppot_changes = apppot_file
            else:
                apppot_img = apppot_file
        pathToExecutable = sessionParas['pathToExecutable']
        localBaseDir     = sessionParas['localBaseDir']
        architecture     = sessionParas['architecture']
        jobname          = sessionParas['jobname']
        executable = os.path.basename(self.pathToExecutable)
        inputs = { self.pathToExecutable:executable }
        # make a "stage" directory where input files are collected
        path_to_stage_dir = os.path.join(self.paraFolder, jobname)
        gc3libs.utils.mkdir(path_to_stage_dir)
        prefix_len = len(path_to_stage_dir) + 1
        # 2. apply substitutions to parameter files
        for (path, changes) in substs.iteritems():
            for (var, val, index, regex) in changes:
                support.update_parameter_in_file(os.path.join(localBaseDir, path),
                                         var, index, val, regex)
        support.fillInputDir(localBaseDir, path_to_stage_dir)
        # 3. build input file list
        for dirpath,dirnames,filenames in os.walk(path_to_stage_dir):
            for filename in filenames:
                # cut the leading part, which is == to path_to_stage_dir
                relpath = dirpath[prefix_len:]
                # ignore output directory contents in resubmission
                if relpath. startswith('output'):
                    continue
                remote_path = os.path.join(relpath, filename)
                inputs[os.path.join(dirpath, filename)] = remote_path
        # all contents of the `output` directory are to be fetched
        outputs = { 'output/':'' }
        kwargs = {}
        kwargs['stdout'] = 'idRisk.log'
        kwargs['join'] = True
        kwargs['output_dir'] = os.path.join(path_to_stage_dir, 'output')
        kwargs['requested_architecture'] = self.architecture
        
        # adaptions for uml
        if use_apppot:
            if apppot_img is not None:
                kwargs['apppot_img'] = apppot_img
            if apppot_changes is not None:
                kwargs['apppot_changes'] = apppot_changes
            cls = idRiskApppotApplication
        else:
            cls = idRiskApplication 
        kwargs.setdefault('tags', [ ])

        # hand over job to create
#        self.curApplication = cls('/home/user/job/' + executable, [], inputs, outputs, **kwargs)
        self.curApplication = cls('./' + executable, [], inputs, outputs, **kwargs)

        SequentialTaskCollection.__init__(self, self.jobname, [ self.curApplication ])

        logger.debug('done gParaSearchDriver.__init__ for job %s' % sessionParas['jobname'])
Exemplo n.º 35
0
 def __init__(self, *args, **kwargs):
     SequentialTaskCollection.__init__(self, *args, **kwargs)
     self.next_called_n_times = 0
Exemplo n.º 36
0
 def __init__(self, num_tasks, **extra_args):
     tasks = [
         SuccessfulApp('stage{n}'.format(n=n)) for n in range(num_tasks)
     ]
     SequentialTaskCollection.__init__(self, tasks, **extra_args)
Exemplo n.º 37
0
 def __init__(self, *args, **kwargs):
     SequentialTaskCollection.__init__(self, *args, **kwargs)
     self.next_called_n_times = 0
Exemplo n.º 38
0
    def __init__(self, pathToExecutable, pathToStageDir, architecture, baseDir, xVars, initialPop,
                 nPopulation, domain, solverVerb, problemType, pathEmpirical,
                 itermax, xConvCrit, yConvCrit,
                 makePlots, optStrategy, fWeight, fCritical, ctryList, analyzeResults, nlc, plot3dTable, combOverviews,
                 output_dir = '/tmp', **extra_args):

        '''
          pathToExecutable: Path to main executable. 
          pathToStageDir  : Path to directory in which the action takes place. Usually set to os.getcwd(). 
          architecture    : Set the architecture used. 
          baseDir         : Directory in which the input files are assembled. This directory is sent as input to the cluseter. 
          xVars           : Names of the x variables.
          initialPop      : The initial population if recovering from earlier failure. 
          nPopulation     : Population size. 
          domain          : The domain of the x variables. List of (lowerbound, upperbound) tuples. 
          solverVerb      : Verbosity of the solver. 
          problemType     : The problem type of the forward premium optimization. One4all, one4each etc. 
          pathEmpirical   : Path to the empirical results of the forward premium project. 
          itermax         : Maximum # of iterations of the solver. 
          xConvCrit       : Convergence criteria for x variables. 
          yConvCrit       : Convergence criteria for the y variables. 
          makePlots       : Make plots? 
          optStrategy     : The kind of differential evolution strategy to use. 
          fWeight         : 
          fCritical       : 
          ctryList        : The list of ctrys analyzed. 
          analyzeResults  : Function to analyze the output retrieved from the servers. 
          nlc             : Constraint function. 
          plot3dTable     : Function to generate 3d plots. 
          combOverviews   : Function to combine overviews. 
        '''

        logger.debug('entering gParaSearchDriver.__init__')

        # Set up initial variables and set the correct methods.
        self.pathToStageDir = pathToStageDir
        self.problemType = problemType
        self.pathToExecutable = pathToExecutable
        self.architecture = architecture
        self.baseDir = baseDir
        self.verbosity = solverVerb.upper()
        self.jobname = extra_args['jobname']
        self.ctryList = ctryList.split()
        self.xVars = xVars
        self.domain = domain
        self.n = len(self.xVars.split())
        self.extra_args = extra_args
        self.analyzeResults = analyzeResults
        self.plot3dTable    = plot3dTable
        self.combOverviews = combOverviews

        # Set solver options
        S_struct = {}
        S_struct['I_NP']         = int(nPopulation)
        S_struct['F_weight']     = float(fWeight)
        S_struct['F_CR']         = float(fCritical)
        S_struct['I_D']          = self.n
        S_struct['lowerBds']     = np.array([ element[0] for element in domain ], dtype = 'float64')
        S_struct['upperBds']     = np.array([ element[1] for element in domain ], dtype = 'float64')
        S_struct['I_itermax']    = int(itermax)
        S_struct['F_VTR']        = float(yConvCrit)
        S_struct['I_strategy']   = int(optStrategy)
        S_struct['I_plotting']   = int(makePlots)
        S_struct['xConvCrit']    = float(xConvCrit)
        S_struct['workingDir']   = pathToStageDir
        S_struct['verbosity']    = self.verbosity

        # Initialize solver
        self.deSolver = deKenPrice(S_struct)

        # Set constraint function in solver.
        self.deSolver.nlc = nlc

        # create initial task and register it
        if initialPop:
            self.deSolver.newPop = np.loadtxt(initialPop, delimiter = '  ')
        else:
            self.deSolver.newPop = self.deSolver.drawInitialSample()

        #self.deSolver.plotPopulation(self.deSolver.newPop)
        self.deSolver.I_iter += 1
        self.evaluator = gParaSearchParallel(self.deSolver.newPop, self.deSolver.I_iter, self.pathToExecutable, self.pathToStageDir,
                                             self.architecture, self.baseDir, self.xVars, self.verbosity, self.problemType, self.analyzeResults,
                                             self.ctryList, **self.extra_args)

        initial_task = self.evaluator

        SequentialTaskCollection.__init__(self, self.jobname, [initial_task])
Exemplo n.º 39
0
    def __init__(self, single_run_duration, generations_to_do,
                 N, p_mut_coeff, choose_or_rand, sick_or_not, off_v_last,
                 output_dir, executable=None, **extra_args):

        """Create a new task running an ``MHC_coev`` binary.

        Each binary is expected to run for `single_run_duration`
        minutes and dump its state in file ``latest_work.mat`` if it's
        not finished. This task will continue re-submitting the same
        executable together with the saved workspace until
        `generations_to_do` generations have been computed.

        :param single_run_duration:
          Duration of a single step (as a `gc3libs.quantity.Duration`:class: value)

        :param int generations_to_do:
          Count of generations that ``MHC_coev`` should simulate.

        :param              N: Passed unchanged to the MHC_coev program.
        :param    p_mut_coeff: Passed unchanged to the MHC_coev program.
        :param choose_or_rand: Passed unchanged to the MHC_coev program.
        :param    sick_or_not: Passed unchanged to the MHC_coev program.
        :param     off_v_last: Passed unchanged to the MHC_coev program.

        :param str output_dir:
          Path to a directory where output files
          from all runs should be collected.

        :param str executable:
          Path to the ``MHC_coev`` executable binary, or `None`
          (default) to specify that the default version available on
          the execution site should be used.

        """
        # remember values for later use
        self.executable = executable
        self.output_dir = output_dir
        # allow 5 extra minutes for final saving the MatLab workspace
        self.single_run_duration = single_run_duration + 5*minutes
        self.generations_to_do = generations_to_do
        self.p_mut_coeff = p_mut_coeff
        self.N = N
        self.choose_or_rand = choose_or_rand
        self.sick_or_not = sick_or_not
        self.off_v_last = off_v_last
        self.extra = extra_args

        self.generations_done = 0

        # make up a sensibel job name if there isn't one
        if 'jobname' in extra_args:
            self.jobname = extra_args['jobname']
        else:
            if self.executable is None:
                self.jobname = ('MHC_coev.%s.%s.%s.%s.%s'
                                % (N, p_mut_coeff, choose_or_rand, sick_or_not, off_v_last))
            else:
                os.path.basename(self.executable)

        # remove potentially conflicting kyword arguments
        extra_args.pop('output_dir', None)
        extra_args.pop('requested_walltime', None)

        # create initial task and register it
        initial_task = GMhcCoevApplication(
            N, p_mut_coeff, choose_or_rand, sick_or_not, off_v_last,
            output_dir = os.path.join(output_dir, 'tmp'),
            executable = self.executable,
            requested_walltime = self.single_run_duration,
            **extra_args)
        SequentialTaskCollection.__init__(self, [initial_task])
Exemplo n.º 40
0
    def __init__(self, pathToExecutable, pathToStageDir, architecture, baseDir, xVars, initialPop,
                 nPopulation, domain, solverVerb, problemType, pathEmpirical,
                 itermax, xConvCrit, yConvCrit,
                 makePlots, optStrategy, fWeight, fCritical, ctryList, analyzeResults, nlc, plot3dTable, combOverviews,
                 output_dir = '/tmp', **extra_args):

        '''
          pathToExecutable: Path to main executable. 
          pathToStageDir  : Path to directory in which the action takes place. Usually set to os.getcwd(). 
          architecture    : Set the architecture used. 
          baseDir         : Directory in which the input files are assembled. This directory is sent as input to the cluseter. 
          xVars           : Names of the x variables.
          initialPop      : The initial population if recovering from earlier failure. 
          nPopulation     : Population size. 
          domain          : The domain of the x variables. List of (lowerbound, upperbound) tuples. 
          solverVerb      : Verbosity of the solver. 
          problemType     : The problem type of the forward premium optimization. One4all, one4each etc. 
          pathEmpirical   : Path to the empirical results of the forward premium project. 
          itermax         : Maximum # of iterations of the solver. 
          xConvCrit       : Convergence criteria for x variables. 
          yConvCrit       : Convergence criteria for the y variables. 
          makePlots       : Make plots? 
          optStrategy     : The kind of differential evolution strategy to use. 
          fWeight         : 
          fCritical       : 
          ctryList        : The list of ctrys analyzed. 
          analyzeResults  : Function to analyze the output retrieved from the servers. 
          nlc             : Constraint function. 
          plot3dTable     : Function to generate 3d plots. 
          combOverviews   : Function to combine overviews. 
        '''

        logger.debug('entering gParaSearchDriver.__init__')

        # Set up initial variables and set the correct methods.
        self.pathToStageDir = pathToStageDir
        self.problemType = problemType
        self.pathToExecutable = pathToExecutable
        self.architecture = architecture
        self.baseDir = baseDir
        self.verbosity = solverVerb.upper()
        self.jobname = extra_args['jobname']
        self.ctryList = ctryList.split()
        self.xVars = xVars
        self.domain = domain
        self.n = len(self.xVars.split())
        self.extra_args = extra_args
        self.analyzeResults = analyzeResults
        self.plot3dTable    = plot3dTable
        self.combOverviews = combOverviews

        # Set solver options
        S_struct = {}
        S_struct['I_NP']         = int(nPopulation)
        S_struct['F_weight']     = float(fWeight)
        S_struct['F_CR']         = float(fCritical)
        S_struct['I_D']          = self.n
        S_struct['lowerBds']     = np.array([ element[0] for element in domain ], dtype = 'float64')
        S_struct['upperBds']     = np.array([ element[1] for element in domain ], dtype = 'float64')
        S_struct['I_itermax']    = int(itermax)
        S_struct['F_VTR']        = float(yConvCrit)
        S_struct['I_strategy']   = int(optStrategy)
        S_struct['I_plotting']   = int(makePlots)
        S_struct['xConvCrit']    = float(xConvCrit)
        S_struct['workingDir']   = pathToStageDir
        S_struct['verbosity']    = self.verbosity

        # Initialize solver
        self.deSolver = deKenPrice(S_struct)

        # Set constraint function in solver.
        self.deSolver.nlc = nlc

        # create initial task and register it
        if initialPop:
            self.deSolver.newPop = np.loadtxt(initialPop, delimiter = '  ')
        else:
            self.deSolver.newPop = self.deSolver.drawInitialSample()

        #self.deSolver.plotPopulation(self.deSolver.newPop)
        self.deSolver.I_iter += 1
        self.evaluator = gParaSearchParallel(self.deSolver.newPop, self.deSolver.I_iter, self.pathToExecutable, self.pathToStageDir,
                                             self.architecture, self.baseDir, self.xVars, self.verbosity, self.problemType, self.analyzeResults,
                                             self.ctryList, **self.extra_args)

        initial_task = self.evaluator

        SequentialTaskCollection.__init__(self, self.jobname, [initial_task])
Exemplo n.º 41
0
 def __init__(self, num_tasks, **extra_args):
     tasks = [SuccessfulApp('stage{n}'.format(n=n)) for n in range(num_tasks)]
     SequentialTaskCollection.__init__(self, tasks, **extra_args)