Exemplo n.º 1
0
    def test_gcam_overlay(self):
        layer = 'full'
        metric = 'wioa'
        model = gcam.inject(self.model,
                            output_dir=os.path.join(
                                self.current_path,
                                'results/unet_seg/gcam_overlay'),
                            backend='gcam',
                            layer=layer,
                            evaluate=True,
                            save_scores=False,
                            save_maps=True,
                            save_pickle=False,
                            metric=metric)
        model.eval()
        data_loader = DataLoader(self.dataset, batch_size=1, shuffle=False)
        model.test_run(next(iter(data_loader))["img"])

        for i, batch in enumerate(data_loader):
            _ = model(batch["img"], mask=batch["gt"], raw_input=batch["img"])

        del model
        gc.collect()
        torch.cuda.empty_cache()

        if CLEAR and os.path.isdir(
                os.path.join(self.current_path, 'results/unet_seg')):
            shutil.rmtree(os.path.join(self.current_path, 'results/unet_seg'))
Exemplo n.º 2
0
    def test_gcam_overlay(self):
        layer = 'layer4'
        model = gcam.inject(self.model,
                            output_dir=os.path.join(
                                self.current_path,
                                'results/resnet152/test_gcam_overlay'),
                            backend='gcam',
                            layer=layer,
                            evaluate=False,
                            save_scores=False,
                            save_maps=True,
                            save_pickle=False)
        model.eval()
        data_loader = DataLoader(self.dataset, batch_size=1, shuffle=False)

        for i, batch in enumerate(data_loader):
            _ = model(batch[0][0], raw_input=batch[0][1])

        del model
        gc.collect()
        torch.cuda.empty_cache()

        if CLEAR and os.path.isdir(
                os.path.join(self.current_path, 'results/resnet152')):
            shutil.rmtree(os.path.join(self.current_path, 'results/resnet152'))
Exemplo n.º 3
0
    def test_gbp(self):
        model = gcam.inject(self.model,
                            output_dir=os.path.join(self.current_path,
                                                    'results/unet_seg/gbp'),
                            backend='gbp',
                            evaluate=True,
                            save_scores=False,
                            save_maps=True,
                            save_pickle=False,
                            metric="wioa")
        model.eval()
        data_loader = DataLoader(self.dataset, batch_size=1, shuffle=False)

        for i, batch in enumerate(data_loader):
            _ = model(batch["img"], mask=batch["gt"])

        del model
        gc.collect()
        torch.cuda.empty_cache()

        if CLEAR and os.path.isdir(
                os.path.join(self.current_path, 'results/unet_seg')):
            shutil.rmtree(os.path.join(self.current_path, 'results/unet_seg'))