Exemplo n.º 1
0
def _slate2gem_mul(expr, self):
    A, B = map(self, expr.children)
    *i, k = tuple(make_indices(len(A.shape)))
    _, *j = tuple(make_indices(len(B.shape)))
    ABikj = Product(Indexed(A, tuple(i + [k])),
                    Indexed(B, tuple([k] + j)))
    return ComponentTensor(IndexSum(ABikj, (k, )), tuple(i + j))
Exemplo n.º 2
0
def _slate2gem_diagonal(expr, self):
    if not self.matfree:
        A, = map(self, expr.children)
        assert A.shape[0] == A.shape[1]
        i, j = (Index(extent=s) for s in A.shape)
        return ComponentTensor(Product(Indexed(A, (i, i)), Delta(i, j)),
                               (i, j))
    else:
        raise NotImplementedError("Diagonals on Slate expressions are \
                                   not implemented in a matrix-free manner yet."
                                  )
Exemplo n.º 3
0
def _slate2gem_inverse(expr, self):
    tensor, = expr.children
    if expr.diagonal:
        # optimise inverse on diagonal tensor by translating to
        # matrix which contains the reciprocal values of the diagonal tensor
        A, = map(self, expr.children)
        i, j = (Index(extent=s) for s in A.shape)
        return ComponentTensor(
            Product(Division(Literal(1), Indexed(A, (i, i))), Delta(i, j)),
            (i, j))
    else:
        return Inverse(self(tensor))
Exemplo n.º 4
0
 def product(self, o, *ops):
     assert o.ufl_shape == ()
     return Product(*ops)
Exemplo n.º 5
0
def _slate2gem_negative(expr, self):
    child, = map(self, expr.children)
    indices = tuple(make_indices(len(child.shape)))
    return ComponentTensor(Product(Literal(-1), Indexed(child, indices)),
                           indices)