Exemplo n.º 1
0
    def to_gemmi(self):
        mtz = gemmi.Mtz(with_base=False)
        mtz.title = self.mtz_title
        mtz.history = self.mtz_history
        spacegroup = self.spacegroup.to_gemmi()
        mtz.spacegroup = spacegroup
        unit_cell = self.unit_cell.to_gemmi()
        mtz.set_cell_for_all(unit_cell)

        for dataset in self.datasets:
            mtz.add_dataset(dataset.dataset_name)
            ds = mtz.dataset(dataset.id)
            ds.project_name = dataset.project_name
            ds.crystal_name = dataset.crystal_name
            ds.wavelength = dataset.wavelength

        for column in self.columns:
            mtz.add_column(column.label,
                           column.column_type,
                           dataset_id=column.dataset_id)

        mtz.set_data(self.array)

        mtz.update_reso()

        return mtz
Exemplo n.º 2
0
def main():
    config = Config.from_config()

    m = gemmi.read_ccp4_map(str(config.xmap_in))
    print(dir(m))
    # m.spacegroup = gemmi.find_spacegroup_by_name('P1')
    print(m.grid.spacegroup)
    m.grid.spacegroup = gemmi.find_spacegroup_by_name('P1')
    print(m.grid.spacegroup)

    m.setup()
    print(m.grid.spacegroup)

    m.grid.spacegroup = gemmi.find_spacegroup_by_name('P1')
    print(m.grid.spacegroup)
    sf = gemmi.transform_map_to_f_phi(m.grid, half_l=True)
    print(sf.spacegroup)
    # data = sf
    print(dir(sf))
    data = sf.prepare_asu_data(dmin=config.resolution, with_000=True)

    mtz = gemmi.Mtz(with_base=True)
    # mtz = gemmi.Mtz()
    print(dir(mtz))
    mtz.spacegroup = sf.spacegroup
    # mtz.spacegroup = gemmi.find_spacegroup_by_name('P1')
    # mtz.set_cell_for_all(sf.unit_cell)
    mtz.cell = sf.unit_cell
    mtz.add_dataset('unknown')
    mtz.add_column('FWT', 'F')
    mtz.add_column('PHWT', 'P')
    mtz.set_data(data)
    mtz.write_to_file(str(config.mtz_out))
Exemplo n.º 3
0
    def __setstate__(self, state):
        data = state["data"]

        spacegroup = state["spacegroup"]
        unit_cell = state["unit_cell"]

        mtz = gemmi.Mtz()
        mtz.spacegroup = gemmi.find_spacegroup_by_number(spacegroup)
        mtz.cell.set(
            unit_cell[0],
            unit_cell[1],
            unit_cell[2],
            unit_cell[3],
            unit_cell[4],
            unit_cell[5],
        )

        datasets = state["datasets"]
        columns = state["columns"]

        for dataset_id, dataset_label in datasets.items():
            mtz.add_dataset(dataset_label)
            dataset_columns = columns[dataset_id]
            for column_name, column_type in dataset_columns.items():
                mtz.add_column(column_name, column_type)

        mtz.set_data(data)

        self.mtz = mtz
Exemplo n.º 4
0
def combine_mtz(prefix, columns):
    """Combine columns from multiple MTZ files with gemmijoin"""
    result = {
        "hklout": "%s.mtz" % prefix,
        "stdout": "%s.log" % prefix,
        "stderr": "%s.err" % prefix,
    }
    reference = columns[0]
    reference_mtz = gemmi.read_mtz_file(reference)
    reference_data = numpy.array(reference_mtz, copy=False)
    reference_df = pandas.DataFrame(data=reference_data,
                                    columns=reference_mtz.column_labels())
    reference_sel_col_df = reference_df[[
        'H', 'K', 'L', 'FP', 'SIGFP', 'FREE', 'PHWT', 'FOM'
    ]]

    model = columns[1]
    model_mtz = gemmi.read_mtz_file(model)
    model_data = numpy.array(model_mtz, copy=False)
    model_df = pandas.DataFrame(data=model_data,
                                columns=model_mtz.column_labels())
    model_sel_col_df = model_df[['PHWT', 'FOM']]
    model_sel_col_df = model_sel_col_df.rename(columns={
        'PHWT': 'PHWT_model',
        'FOM': 'FOM_model'
    })

    combined_df = pandas.concat([reference_sel_col_df, model_sel_col_df],
                                ignore_index=True,
                                axis=1)

    combined_array = combined_df.to_numpy()

    mtz_new = gemmi.Mtz()
    mtz_new.add_dataset('combined')
    mtz_new.add_column('H', 'H', dataset_id=0)
    mtz_new.add_column('K', 'H', dataset_id=0)
    mtz_new.add_column('L', 'H', dataset_id=0)
    mtz_new.add_column('FP', 'F', dataset_id=0)
    mtz_new.add_column('SIGFP', 'Q', dataset_id=0)
    mtz_new.add_column('FREE', 'I', dataset_id=0)
    mtz_new.add_column('PHWT_ref', 'P', dataset_id=0)
    mtz_new.add_column('FOM_ref', 'W', dataset_id=0)
    mtz_new.add_column('PHWT_model', 'P', dataset_id=0)
    mtz_new.add_column('FOM_model', 'W', dataset_id=0)

    unit_cell = reference_mtz.cell
    space_group = reference_mtz.spacegroup
    mtz_new.spacegroup = space_group
    mtz_new.cell = unit_cell
    mtz_new.set_data(combined_array)

    mtz_new.write_to_file(result["hklout"])

    if not os.path.exists(result["hklout"]):
        return {"error": "No reflection data produced"}
    return result
Exemplo n.º 5
0
 def build_emptyMTZ(sg):
     """Build empty gemmi.MTZ"""
     m = gemmi.Mtz()
     m.spacegroup = sg
     m.add_dataset('crystal')
     m.add_column('H', 'H')
     m.add_column('K', 'H')
     m.add_column('L', 'H')
     m.add_column('M/ISYM', 'Y')
     return m
Exemplo n.º 6
0
#!/usr/bin/env python
# Convert CCP4 map to map coefficients in MTZ

import sys
import gemmi

RESOLUTION_LIMIT = 1.5  # set 0 for no limit

if len(sys.argv) != 3:
    sys.exit('Usage: map2mtz.py input.ccp4 output.mtz')

m = gemmi.read_ccp4_map(sys.argv[1])
m.setup()
sf = gemmi.transform_map_to_f_phi(m.grid, half_l=True)
data = sf.prepare_asu_data(dmin=RESOLUTION_LIMIT)

mtz = gemmi.Mtz(with_base=True)
mtz.spacegroup = sf.spacegroup
mtz.set_cell_for_all(sf.unit_cell)
mtz.add_dataset('unknown')
mtz.add_column('FWT', 'F')
mtz.add_column('PHWT', 'P')
mtz.set_data(data)
mtz.write_to_file(sys.argv[2])
Exemplo n.º 7
0
def to_gemmi(dataset, skip_problem_mtztypes=False):
    """
    Construct gemmi.Mtz object from DataSet

    If ``dataset.merged == False``, the reflections will be mapped to the
    reciprocal space ASU, and a M/ISYM column will be constructed. 

    If boolean flags with the label ``PARTIAL`` or ``CENTRIC`` are found
    in the DataSet, these will be cast to the ``MTZInt`` dtype, and included
    in the gemmi.Mtz object. 

    Parameters
    ----------
    dataset : rs.DataSet
        DataSet object to convert to gemmi.Mtz
    skip_problem_mtztypes : bool
        Whether to skip columns in DataSet that do not have specified
        mtz datatypes

    Returns
    -------
    gemmi.Mtz
    """
    # Check that cell and spacegroup are defined
    if not dataset.cell:
        raise AttributeError(
            f"Instance of type {dataset.__class__.__name__} has no unit cell information"
        )
    if not dataset.spacegroup:
        raise AttributeError(
            f"Instance of type {dataset.__class__.__name__} has no space group information"
        )

    # Build up a gemmi.Mtz object
    mtz = gemmi.Mtz()
    mtz.cell = dataset.cell
    mtz.spacegroup = dataset.spacegroup

    # Handle Unmerged data
    if not dataset.merged:
        dataset.hkl_to_asu(inplace=True)

    # Construct data for Mtz object.
    mtz.add_dataset("reciprocalspaceship")
    temp = dataset.reset_index()
    columns = []
    for c in temp.columns:
        cseries = temp[c]
        if isinstance(cseries.dtype, MTZDtype):
            mtzcol = mtz.add_column(label=c, type=cseries.dtype.mtztype)
            columns.append(c)
        # Special case for CENTRIC and PARTIAL flags
        elif cseries.dtype.name == "bool" and c in ["CENTRIC", "PARTIAL"]:
            temp[c] = temp[c].astype("MTZInt")
            mtzcol = mtz.add_column(label=c, type="I")
            columns.append(c)
        elif skip_problem_mtztypes:
            continue
        else:
            raise ValueError(
                f"column of type {cseries.dtype} cannot be written to an MTZ file. "
                f"To skip columns without explicit MTZ dtypes, set skip_problem_mtztypes=True"
            )
    mtz.set_data(temp[columns].to_numpy(dtype="float32"))

    return mtz