Exemplo n.º 1
0
 def test_ortho_cell(self):
     cell = UnitCell(25.14, 39.50, 45.07, 90, 90, 90)
     pos = Position(5, -6, 7)
     frac = cell.fractionalize(pos)
     self.assertAlmostEqual(frac.x, 0.198886, delta=1e-6)
     self.assertAlmostEqual(frac.y, -0.151899, delta=1e-6)
     self.assertAlmostEqual(frac.z, 0.155314, delta=1e-6)
     pos2 = cell.orthogonalize(frac)
     self.assertAlmostEqual(pos.x, pos2.x, delta=1e-12)
     self.assertAlmostEqual(pos.y, pos2.y, delta=1e-12)
     self.assertAlmostEqual(pos.z, pos2.z, delta=1e-12)
     corner = cell.orthogonalize(gemmi.Fractional(1, 1, 1))
     self.assertAlmostEqual(corner.x, cell.a, delta=1e-12)
     self.assertAlmostEqual(corner.y, cell.b, delta=1e-12)
     self.assertAlmostEqual(corner.z, cell.c, delta=1e-12)
     rec = cell.reciprocal()
     self.assertEqual([rec.alpha, rec.beta, rec.gamma], [90, 90, 90])
     self.assertAlmostEqual(rec.a, 1 / cell.a, delta=1e-17)
Exemplo n.º 2
0
 def test_triclinic_cell(self):
     cell = UnitCell(35.996, 41.601, 45.756, 67.40, 66.90, 74.85)
     pos = Position(-15, -17, 190)
     frac = cell.fractionalize(pos)
     pos2 = cell.orthogonalize(frac)
     self.assertAlmostEqual(pos.x, pos2.x, delta=1e-12)
     self.assertAlmostEqual(pos.y, pos2.y, delta=1e-12)
     self.assertAlmostEqual(pos.z, pos2.z, delta=1e-12)
     # tested against values from uctbx:
     #  from cctbx import uctbx
     #  uc = uctbx.unit_cell((35.996, 41.601, 45.756, 67.40, 66.90, 74.85))
     #  uc.d_star_sq((-3, -2, 1))
     #  uc.d((3, 4, 5))
     self.assertAlmostEqual(cell.calculate_1_d2(-3, -2, 1),
                            0.0128229081865688,
                            delta=1e-17)
     self.assertAlmostEqual(cell.calculate_d(3, 4, 5),
                            7.7319559244298,
                            delta=1e-13)
Exemplo n.º 3
0
 def test_triclinic_cell(self):
     cell = UnitCell(35.996, 41.601, 45.756, 67.40, 66.90, 74.85)
     # this would give syntax error with Python < 3.5
     #o_f = cell.orthogonalization_matrix @ cell.fractionalization_matrix
     o_f = cell.orthogonalization_matrix.multiply(
         cell.fractionalization_matrix)
     self.assertTrue(o_f.approx(gemmi.Mat33(), 1e-15))
     pos = Position(-15, -17, 190)
     frac = cell.fractionalize(pos)
     pos2 = cell.orthogonalize(frac)
     self.assertAlmostEqual(pos.x, pos2.x, delta=1e-12)
     self.assertAlmostEqual(pos.y, pos2.y, delta=1e-12)
     self.assertAlmostEqual(pos.z, pos2.z, delta=1e-12)
     # tested against values from uctbx:
     #  from cctbx import uctbx
     #  uc = uctbx.unit_cell((35.996, 41.601, 45.756, 67.40, 66.90, 74.85))
     #  uc.d_star_sq((-3, -2, 1))
     #  uc.d((3, 4, 5))
     self.assertAlmostEqual(cell.calculate_1_d2([-3, -2, 1]),
                            0.0128229081865688,
                            delta=1e-17)
     self.assertAlmostEqual(cell.calculate_d([3, 4, 5]),
                            7.7319559244298,
                            delta=1e-13)
     #  uc.metrical_matrix()
     cctbx_mm = [
         1295.712016, 1730.643201, 2093.611536, 391.3591013825865,
         646.1921687548228, 731.5043620154578
     ]
     mt = cell.metric_tensor()
     assert_almost_equal_seq(self, mt.elements_pdb(), cctbx_mm, delta=1e-12)
     #  uc.reciprocal_metrical_matrix()
     cctbx_rmm = [
         0.00092792089082916, 0.000689632633981, 0.0006277651322979,
         -0.000104162588996, -0.000250008091601, -0.000208806754807
     ]
     rmt = cell.reciprocal_metric_tensor()
     assert_almost_equal_seq(self,
                             rmt.elements_pdb(),
                             cctbx_rmm,
                             delta=1e-15)
 M = np.array(missetting_matrix, dtype=float).reshape((3,3))
 o1 = np.deg2rad(float(omega_polar_orientation[0]))
 o2 = np.deg2rad(float(omega_polar_orientation[1]))
 gonio_phi = np.deg2rad(float(goniometer[2]))
 cell = UnitCell(*[float(i) for i in unit_cell]) # i is an iterating variable
 
 # Get rotation matrix from B to U
 R = get_rotation_matrix(np.array([0., 0., -1.]),  o1)
 temp  = get_rotation_matrix(np.array([0., 1., 0.]), o2)
 R = temp@R
 temp = get_rotation_matrix(([email protected]([0., 1., 0.])[:,None])[:,0], gonio_phi)
 R = temp@R
 
 # Create transposed orthogonalization matrix
 O = np.vstack((
     cell.orthogonalize(Fractional(1., 0., 0.)).tolist(),
     cell.orthogonalize(Fractional(0., 1., 0.)).tolist(),
     cell.orthogonalize(Fractional(0., 0., 1.)).tolist(),
 )).T
 
 # Compute U, B, A matrices
 precog2mosflm = np.array([ 
                 [  0,  0,  1],
                 [  0, -1,  0],
                 [  1,  0,  0]]) # Change from Precognition to MOSFLM convention (this is a left operator)
 precog_A = precog2mosflm@(R@[email protected](O))
 
 # precog_A = precog_U@precog_B # This is a lie
 # U is a properly oriented real-space crystallographic basis for frame in lab coordinate system
 # So is B