Exemplo n.º 1
0
        if len(jobCalibrations) > 0: jobSuccess = True

    job = jobs[0]
    time.sleep(4)
    resultsURL = "http://nova.astrometry.net/api/jobs/%s/calibration" % (job)
    print("Requesting results from ", resultsURL)
    response = requests.post(resultsURL)
    print(response.text)

    wcsURL = "http://nova.astrometry.net/wcs_file/4014529"
    print("Requesting results from ", wcsURL)
    response = requests.post(wcsURL)
    print(response.text)

    # Use wget to grab the WCS file
    wcsFilename = generallib.addSuffixToFilename(runObject.runID, "wcs")
    wcsURL = "http://nova.astrometry.net/wcs_file/%s" % job
    wcsCommand = ["wget"]
    wcsCommand.append("-O")
    wcsCommand.append(wcsFilename)
    wcsCommand.append(wcsURL)

    subprocess.call(wcsCommand)
    runObject.addProperty("wcsFITS", wcsFilename)
    runObject.save()

    # Read the WCS solution and add this to the JSON object
    wcsFile = fits.open(runObject.getProperty("wcsFITS"))
    header = wcsFile[0].header
    wcs = wcslib.wcsSolution()
Exemplo n.º 2
0
                                   color=filterColours[f],
                                   fmt='.',
                                   ecolor='gray',
                                   capsize=0,
                                   marker='.',
                                   ms=4,
                                   alpha=1.0)

    axes = matplotlib.pyplot.gca()
    matplotlib.rcParams['legend.loc'] = 'upper right'
    axes.legend()

    matplotlib.pyplot.draw()

    if arg.save is not None:
        savename = generallib.addSuffixToFilename(arg.save, "all")
        print("Writing to file: %s" % savename)
        matplotlib.pyplot.savefig(savename)

    zoomPlot = matplotlib.pyplot.figure(figsize=(plotWidth, plotHeight * 1.4))
    colours = ['g', 'r', 'purple', 'brown']
    filterColours = {
        'u': 'blue',
        'g': 'green',
        'r': 'red',
        'i': 'purple',
        'z': 'brown'
    }
    offset = 0.1
    midDates = {}
    startPhase = 0.9
Exemplo n.º 3
0
	vxy = float(hdulist[mainImage].header['VXY'])
	hdulist.close()
	vmin, vmax = numpy.median(data) - data.std(), numpy.median(data) + 4 * data.std()

	contrastData = generallib.percentiles(data, percentileLower, percentileUpper)
			
	matplotlib.pyplot.imshow(contrastData, origin='lower', cmap=colourMap, aspect='equal', extent=(-nx*vxy,nx*vxy, -ny*vxy,ny*vxy))
	(vx, vy) = trm.roche.vlobe2(q, n=200)
	matplotlib.pyplot.plot(vx*scale, vy*scale, color='g')
	(vx, vy) = trm.roche.vlobe1(q, n=200)
	matplotlib.pyplot.plot(vx*scale, vy*scale, ls="--", color='g')
	(vx, vy) = trm.roche.vstream(q, step=0.01, vtype=1, n=70)
	matplotlib.pyplot.plot(vx*scale, vy*scale, color='g')
	matplotlib.pyplot.xlabel("$\mathrm{V}_\mathrm{x} (\mathrm{km}\,\mathrm{s}^{-1})$")
	matplotlib.pyplot.ylabel("$\mathrm{V}_\mathrm{y} (\mathrm{km}\,\mathrm{s}^{-1})$")
	axis = matplotlib.pyplot.gca()
	print("Scale:", axis.get_xscale())
	axis.set_autoscale_on(False)
	axis.xaxis.set_label_position('top')
	axis.xaxis.tick_top()
	matplotlib.pyplot.draw()
	
	if arg.save:
		filename = generallib.addSuffixToFilename(arg.save, "map")
		print("Writing file: %s"%filename)
		matplotlib.pyplot.savefig(filename)			
	
	matplotlib.pyplot.show(block=arg.p)


Exemplo n.º 4
0
		if arg.json is not None:
			t.writeToJSON(arg.json)
	print(len(targets))

	for object in targets:
		photometryPlot = matplotlib.pyplot.figure(figsize=(plotWidth, plotHeight))
		xValues = object.getColumn('HJD')
		yValues = object.getColumn('mag')
		yErrors = object.getColumn('err')
		matplotlib.pyplot.errorbar(xValues, yValues, color='k', yerr=yErrors, fmt = '.', ecolor='gray', capsize=0)
		matplotlib.pyplot.gca().invert_yaxis()
		matplotlib.pyplot.xlabel('HJD')
		matplotlib.pyplot.ylabel('CRTS magnitude')
		matplotlib.pyplot.gca().set_xlim(left=min(xValues), right=max(xValues))
		if arg.save is not None:
			filename = generallib.addSuffixToFilename(arg.save, "full")
			print("Writing to file: %s"%filename)
			matplotlib.pyplot.savefig(filename)
		
		matplotlib.pyplot.draw()
		

	t = targets[0]
	# Do a Periodogram
	startFrequency  = 1.1  # Cycles/day
	stopFrequency  = 20   # Cycles/day
	spacing = 0.0001
	numsamples = int((stopFrequency-startFrequency)/spacing)
	
	f0,df,Nf = startFrequency, spacing, numsamples
	startTime = numpy.min(xValues)
Exemplo n.º 5
0
	print("HDULength is %d thefore we have %d images"%(length, numImages))
	
	for index in range(numImages):
		num = index*2 + 1
		data = hdulist[num].data	
		nx = int(hdulist[num].header['NAXIS1'])
		ny = int(hdulist[num].header['NAXIS2'])
		vxy = float(hdulist[num].header['VXY'])
		
		vmin, vmax = numpy.median(data) - data.std(), numpy.median(data) + 4 * data.std()

		contrastData = generallib.percentiles(data, 5, 98)
		#plt.imshow(data, cmap='viridis', aspect='equal', vmin=vmin, vmax=vmax, extent=(-nx*vxy,nx*vxy, -ny*vxy,ny*vxy))
		dopplerPlot = matplotlib.pyplot.figure(figsize=(plotHeight, plotHeight))
			
		matplotlib.pyplot.imshow(contrastData, origin='lower', cmap='viridis', aspect='equal', extent=(-nx*vxy,nx*vxy, -ny*vxy,ny*vxy))
		#matplotlib.pyplot.imshow(data, origin='lower', cmap='viridis', aspect='equal', vmin=vmin, vmax=vmax, extent=(-nx*vxy,nx*vxy, -ny*vxy,ny*vxy))
		(vx, vy) = trm.roche.vlobe2(q, n=200)
		matplotlib.pyplot.plot(vx*scale, vy*scale, color='g')
		(vx, vy) = trm.roche.vlobe1(q, n=200)
		matplotlib.pyplot.plot(vx*scale, vy*scale, ls="--", color='g')
		(vx, vy) = trm.roche.vstream(q, step=0.01, vtype=1, n=80)
		matplotlib.pyplot.plot(vx*scale, vy*scale, color='g')
		matplotlib.pyplot.draw()
		if arg.save:
			if numImages>1: filename = generallib.addSuffixToFilename(arg.save, str(index))
			else: filename = arg.save
			print("Writing file: %s"%filename)
			matplotlib.pyplot.savefig(filename)			
	matplotlib.pyplot.show(block=True)