def fine_tune_model(model_file, weights_file, model_type, image_dir, nb_gpu):
    # No kruft plz
    clear_session()

    # Config
    height = constants.SIZES['basic']
    width = height

    if nb_gpu <= 1:
        print("[INFO] training with 1 GPU...")
        model = init_model(model_file,
                           model_type=model_type,
                           weights_file=weights_file)
    else:
        print("[INFO] training with {} GPUs...".format(nb_gpu))

        # we'll store a copy of the model on *every* GPU and then combine
        # the results from the gradient updates on the CPU
        with tf.device("/cpu:0"):
            # initialize the model
            model = init_model(model_file)

        # make the model parallel
        model = multi_gpu_model(model, gpus=nb_gpu)

        # # add dense layer for merged model
        # from keras import backend as K
        # x = model.output
        # predictions = K.bias_add(x, 0)
        # # predictions = Dense(2)(x)
        # model = Model(inputs = model.input, outputs=predictions)

    if not os.path.exists(weights_file):
        weights_file = "weights.tune.{}.{}.gpu{}.hdf5".format(
            model_type, height, nb_gpu)
    # Get all model callbacks
    callbacks_list = callbacks.make_callbacks(weights_file)

    print('Compile model')
    opt = SGD(momentum=.9)
    model.compile(loss='categorical_crossentropy',
                  optimizer=opt,
                  metrics=['accuracy'])

    # Get training/validation data via generators
    train_generator, validation_generator = generators.create_generators(\
        height, width, image_dir=image_dir, nb_gpu=nb_gpu)

    print('Start training!')
    start = time.time()
    history = model.fit_generator(
        train_generator,
        callbacks=callbacks_list,
        epochs=constants.TOTAL_EPOCHS,
        # steps_per_epoch=constants.STEPS_PER_EPOCH,
        steps_per_epoch=train_generator.samples //
        (constants.GENERATOR_BATCH_SIZE * nb_gpu),
        shuffle=True,
        # having crazy threading issues
        # set workers to zero if you see an error like:
        # `freeze_support()`
        max_queue_size=100,
        workers=NUM_CPU,
        use_multiprocessing=True,
        validation_data=validation_generator,
        validation_steps=constants.VALIDATION_STEPS)
    print('Total time:', time.time() - start)

    # Save it for later
    print('Saving Model ...')
    model.save("nsfw.{}x{}.{}.gpu{}.h5".format(width, height, model_type,
                                               nb_gpu))

    # grab the history object dictionary
    H = history.history

    # plot the training loss and accuracy
    N = np.arange(0, len(H["loss"]))
    plt.style.use("ggplot")
    plt.figure()
    plt.plot(N, H["loss"], label="train_loss")
    plt.plot(N, H["val_loss"], label="test_loss")
    plt.plot(N, H["acc"], label="train_acc")
    plt.plot(N, H["val_acc"], label="test_acc")
    plt.title("Inception Model on NSFW Data")
    plt.xlabel("Epoch #")
    plt.ylabel("Loss/Accuracy")
    plt.legend()

    # save the figure
    plt.savefig('gpu_{}_tune_lines.jpg'.format(nb_gpu))
    plt.close()
Exemplo n.º 2
0
# Load checkpoint if one is found
if os.path.exists(weights_file):
    print("loading ", weights_file)
    model.load_weights(weights_file)

# Get all model callbacks
callbacks_list = callbacks.make_callbacks(weights_file)

print('Compile model')
opt = SGD(momentum=.9)
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

# Get training/validation data via generators
train_generator, validation_generator = generators.create_generators(
    height, width)

print('Start training!')
history = model.fit_generator(
    train_generator,
    callbacks=callbacks_list,
    epochs=constants.TOTAL_EPOCHS,
    steps_per_epoch=constants.STEPS_PER_EPOCH,
    shuffle=True,
    # having crazy threading issues
    # set workers to zero if you see an error like:
    # `freeze_support()`
    workers=0,
    use_multiprocessing=True,
    validation_data=validation_generator,
    validation_steps=constants.VALIDATION_STEPS)
Exemplo n.º 3
0
def train_model(model_type,
                weights_file,
                image_dir,
                batch_size,
                total_epochs,
                nb_classes,
                nb_gpu,
                output_filename=None):
    # No kruft plz
    clear_session()

    # Config
    height = constants.SIZES['basic']
    width = height

    if nb_gpu <= 1:
        print("[INFO] training with 1 GPU...")
        model = build_model(weights_file,
                            type=model_type,
                            shape=(height, width, 3),
                            nb_output=nb_classes)
    else:
        print("[INFO] training with {} GPUs...".format(nb_gpu))

        # we'll store a copy of the model on *every* GPU and then combine
        # the results from the gradient updates on the CPU
        with tf.device("/cpu:0"):
            # initialize the model
            model = build_model(weights_file,
                                type=model_type,
                                shape=(height, width, 3),
                                nb_output=nb_classes)

        # make the model parallel
        model = multi_gpu_model(model, gpus=nb_gpu)

        print(model.summary())

        x = model.output
        print('multi gpu output:', x)
        x = Flatten()(x)
        predictions = Dense(nb_output,
                            activation='softmax',
                            name='new_outputs')(x)
        model = Model(inputs=model.input, outputs=predictions)

    if not os.path.exists(weights_file):
        weights_file = "weights.{}.{}.gpu{}.epoch{}.batch{}.cls{}.hdf5".format(
            model_type, height, nb_gpu, total_epochs, batch_size, nb_classes)

    # Get all model callbacks
    callbacks_list = callbacks.make_callbacks(weights_file)

    print('Compile model')
    # originally adam, but research says SGD with scheduler
    # opt = Adam(lr=0.001, amsgrad=True)
    opt = SGD(momentum=.9)
    model.compile(loss='categorical_crossentropy',
                  optimizer=opt,
                  metrics=['accuracy'])

    # Get training/validation data via generators
    if model_type in ['resnet50']:
        mode = 'caffe'
    else:
        mode = 'tf'
    train_generator, validation_generator = generators.create_generators( \
        height, width, image_dir=image_dir, batch_s=batch_size, mode=mode, nb_gpu=nb_gpu)

    print('Start training!')
    cpu_count = multiprocessing.cpu_count()
    start = time.time()
    history = model.fit_generator(
        train_generator,
        callbacks=callbacks_list,
        epochs=total_epochs,
        steps_per_epoch=train_generator.samples // (batch_size * nb_gpu),
        shuffle=True,
        # having crazy threading issues
        # set workers to zero if you see an error like:
        # `freeze_support()`
        max_queue_size=100,
        workers=cpu_count,
        use_multiprocessing=True,
        validation_data=validation_generator,
        validation_steps=constants.VALIDATION_STEPS)
    print('Total time:', time.time() - start)

    # Save it for later
    print('Saving Model ...')
    output = "nsfw.{}x{}.{}.gpu{}.h5".format(width, height, model_type, nb_gpu)
    if output_filename is not None:
        output = output_filename
    model.save(output)

    # grab the history object dictionary
    H = history.history

    # plot the training loss and accuracy
    N = np.arange(0, len(H["loss"]))
    plt.style.use("ggplot")
    plt.figure()
    plt.plot(N, H["loss"], label="train_loss")
    plt.plot(N, H["val_loss"], label="test_loss")
    plt.plot(N, H["acc"], label="train_acc")
    plt.plot(N, H["val_acc"], label="test_acc")
    plt.title("Inception Model on NSFW Data")
    plt.xlabel("Epoch #")
    plt.ylabel("Loss/Accuracy")
    plt.legend()

    # save the figure
    plt.savefig('gpu_{}_train_lines.jpg'.format(nb_gpu))
    plt.close()